In the first part we introduced the security patterns that could be implemented to secure the connectivity between Amazon EKS and Amazon RDS. In this part we will implement the network isolation by deploying the following AWS resources:
- VPC with eight subnets
- 2 public and private subnets for Amazon EKS.
- 2 public and private subnets for Amazon RDS.
- An Internet Gateway attached to the VPC.
- NAT gateways attached to the EKS public subnets.
- Network ACL for each couple of subnets.
VPC
Let's start with the Virtual Private Cloud
.
Create a terraform file infra/plan/vpc.tf
. A simple VPC resource is created:
resource "aws_vpc" "main" {
cidr_block = var.vpc_cidr_block
instance_tenancy = "default"
enable_dns_support = true
enable_dns_hostnames = true
tags = {
Name = "main-${var.env}"
Environment = var.env
}
}
Subnets
Now we create our 8 subnets.
- Two public subnets for high-availability. They will host our External Application Load Balancers created by Amazon EKS and all internet facing Kubernetes workloads.
- Two private subnets for high-availability. They will host our Internal Application Load Balancers created by Amazon EKS and all internal Kubernetes workloads.
- (Optional) Two other public subnets for high-availability. They will host our External Network Load Balancers to expose our private RDS PostgreSQL instance.
- Two other private subnets for high-availability. They will host our Amazon RDS PostgreSQL instance.
Create a terraform file infra/plan/subnet.tf
resource "aws_subnet" "private" {
for_each = {
for subnet in local.private_nested_config : "${subnet.name}" => subnet
}
vpc_id = aws_vpc.main.id
cidr_block = each.value.cidr_block
availability_zone = each.value.az
map_public_ip_on_launch = false
tags = {
Environment = var.env
Name = "${each.value.name}-${var.env}"
"kubernetes.io/role/internal-elb" = each.value.eks ? "1" : ""
}
lifecycle {
ignore_changes = [tags]
}
}
resource "aws_subnet" "public" {
for_each = {
for subnet in local.public_nested_config : "${subnet.name}" => subnet
}
vpc_id = aws_vpc.main.id
cidr_block = each.value.cidr_block
availability_zone = each.value.az
map_public_ip_on_launch = true
tags = {
Environment = var.env
Name = "${each.value.name}-${var.env}"
"kubernetes.io/role/elb" = each.value.eks ? "1" : ""
}
lifecycle {
ignore_changes = [tags]
}
}
I used a local variable to differentiate between each type of subnet.
Create a terraform file infra/plan/variable.tf
variable "private_network_config" {
type = map(object({
cidr_block = string
az = string
associated_public_subnet = string
eks = bool
}))
default = {
"private-eks-1" = {
cidr_block = "10.0.0.0/23"
az = "eu-west-1a"
associated_public_subnet = "public-eks-1"
eks = true
},
"private-eks-2" = {
cidr_block = "10.0.2.0/23"
az = "eu-west-1b"
associated_public_subnet = "public-eks-2"
eks = true
},
"private-rds-1" = {
cidr_block = "10.0.4.0/24"
az = "eu-west-1a"
associated_public_subnet = ""
eks = false
},
"private-rds-2" = {
cidr_block = "10.0.5.0/24"
az = "eu-west-1b"
associated_public_subnet = ""
eks = false
}
}
}
locals {
private_nested_config = flatten([
for name, config in var.private_network_config : [
{
name = name
cidr_block = config.cidr_block
az = config.az
associated_public_subnet = config.associated_public_subnet
eks = config.eks
}
]
])
}
variable "public_network_config" {
type = map(object({
cidr_block = string
az = string
nat_gw = bool
eks = bool
}))
default = {
"public-eks-1" = {
cidr_block = "10.0.6.0/23"
az = "eu-west-1a"
nat_gw = true
eks = true
},
"public-eks-2" = {
cidr_block = "10.0.8.0/23"
az = "eu-west-1b"
nat_gw = true
eks = true
},
"public-rds-1" = {
cidr_block = "10.0.10.0/24"
az = "eu-west-1a"
nat_gw = false
eks = false
},
"public-rds-2" = {
cidr_block = "10.0.11.0/24"
az = "eu-west-1b"
nat_gw = false
eks = false
}
}
}
locals {
public_nested_config = flatten([
for name, config in var.public_network_config : [
{
name = name
cidr_block = config.cidr_block
az = config.az
nat_gw = config.nat_gw
eks = config.eks
}
]
])
}
Internet Gateway
To allow our public Subnets to communicate with the internet, we need to create an internet gateway and associate it to the public subnets using route tables.
Create a terraform file infra/plan/igw.tf
resource "aws_internet_gateway" "igw" {
vpc_id = aws_vpc.main.id
tags = {
Environment = var.env
Name = "igw-${var.env}"
}
}
resource "aws_route_table" "public" {
vpc_id = aws_vpc.main.id
route {
cidr_block = "0.0.0.0/0"
gateway_id = aws_internet_gateway.igw.id
}
tags = {
Environment = var.env
Name = "rt-public-${var.env}"
}
}
resource "aws_route_table_association" "public" {
for_each = {
for subnet in local.public_nested_config : "${subnet.name}" => subnet
}
subnet_id = aws_subnet.public[each.value.name].id
route_table_id = aws_route_table.public.id
}
NAT gateways
In order to allow our private subnets used by Amazon EKS to access the internet, we need to create NAT Gateways on the public subnets used by Amazon EKS. We associate NAT Gateways with private subnets using route tables.
Create a terraform file infra/plan/nat.tf
resource "aws_eip" "nat" {
for_each = {
for subnet in local.public_nested_config : "${subnet.name}" => subnet
if subnet.nat_gw == true
}
vpc = true
tags = {
Environment = var.env
Name = "eip-${each.value.name}-${var.env}"
}
}
resource "aws_nat_gateway" "nat-gw" {
for_each = {
for subnet in local.public_nested_config : "${subnet.name}" => subnet
if subnet.nat_gw == true
}
allocation_id = aws_eip.nat[each.value.name].id
subnet_id = aws_subnet.public[each.value.name].id
tags = {
Environment = var.env
Name = "nat-${each.value.name}-${var.env}"
}
}
resource "aws_route_table" "private" {
for_each = {
for subnet in local.public_nested_config : "${subnet.name}" => subnet
if subnet.nat_gw == true
}
vpc_id = aws_vpc.main.id
route {
cidr_block = "0.0.0.0/0"
nat_gateway_id = aws_nat_gateway.nat-gw[each.value.name].id
}
tags = {
Environment = var.env
Name = "rt-${each.value.name}-${var.env}"
}
}
resource "aws_route_table_association" "private" {
for_each = {
for subnet in local.private_nested_config : "${subnet.name}" => subnet
if subnet.associated_public_subnet != ""
}
subnet_id = aws_subnet.private[each.value.name].id
route_table_id = aws_route_table.private[each.value.associated_public_subnet].id
}
Network Access Control List
Network ACL allows us to restrict the inbound and outbound network traffic to and from a subnet. In our case, we can implement the following rules:
- EKS private and public subnets, allow all inbound / outbound network traffic. We need to have these rules to allow Amazon EKS Control Plane to communicate with Worker nodes.
- RDS public subnets
- allow all inbound / outbound TCP network traffic to RDS private subnets
- allow tcp inbound / outbound TCP network traffic to a specific range of IP addresses only on the RDS port.
- RDS private subnet
- allow inbound traffic on the RDS port from EKS private subnets and all TCP traffic from RDS private subnets.
- allow all outgoing TCP network traffic to EKS private subnets and RDS public subnets.
Create a terraform file infra/plan/nacl.tf
resource "aws_network_acl" "eks-external-zone" {
vpc_id = aws_vpc.main.id
subnet_ids = [aws_subnet.public["public-eks-1"].id, aws_subnet.public["public-eks-2"].id]
tags = {
Name = "eks-external-zone-${var.env}"
Environment = var.env
}
}
resource "aws_network_acl_rule" "eks-ingress-external-zone-rules" {
network_acl_id = aws_network_acl.eks-external-zone.id
rule_number = 100
egress = false
protocol = "-1"
rule_action = "allow"
cidr_block = "0.0.0.0/0"
from_port = 0
to_port = 0
}
resource "aws_network_acl_rule" "eks-egress-external-zone-rules" {
network_acl_id = aws_network_acl.eks-external-zone.id
rule_number = 100
egress = true
protocol = "-1"
rule_action = "allow"
cidr_block = "0.0.0.0/0"
from_port = 0
to_port = 0
}
resource "aws_network_acl" "eks-internal-zone" {
vpc_id = aws_vpc.main.id
subnet_ids = [aws_subnet.private["private-eks-1"].id, aws_subnet.private["private-eks-2"].id]
tags = {
Name = "eks-internal-zone-${var.env}"
Environment = var.env
}
}
resource "aws_network_acl_rule" "ingress-internal-zone-rules" {
network_acl_id = aws_network_acl.eks-internal-zone.id
rule_number = 100
egress = false
protocol = "-1"
rule_action = "allow"
cidr_block = "0.0.0.0/0"
from_port = 0
to_port = 0
}
resource "aws_network_acl_rule" "egress-internal-zone-rules" {
network_acl_id = aws_network_acl.eks-internal-zone.id
rule_number = 100
egress = true
protocol = "-1"
rule_action = "allow"
cidr_block = "0.0.0.0/0"
from_port = 0
to_port = 0
}
resource "aws_network_acl" "rds-external-zone" {
vpc_id = aws_vpc.main.id
subnet_ids = [aws_subnet.public["public-rds-1"].id, aws_subnet.public["public-rds-2"].id]
tags = {
Name = "rds-external-zone-${var.env}"
Environment = var.env
}
}
locals {
nacl_ingress_rds_external_zone_infos = flatten([{
cidr_block = var.internal_ip_range
priority = 100
from_port = var.rds_port
to_port = var.rds_port
}, {
cidr_block = aws_subnet.private["private-rds-1"].cidr_block
priority = 101
from_port = 0
to_port = 65535
},{
cidr_block = aws_subnet.private["private-rds-2"].cidr_block
priority = 102
from_port = 0
to_port = 65535
},{
cidr_block = aws_subnet.public["public-rds-1"].cidr_block
priority = 103
from_port = 0
to_port = 65535
},{
cidr_block = aws_subnet.public["public-rds-2"].cidr_block
priority = 104
from_port = 0
to_port = 65535
}])
}
resource "aws_network_acl_rule" "rds-ingress-external-zone-rules" {
for_each = {
for subnet in local.nacl_ingress_rds_external_zone_infos : "${subnet.priority}" => subnet
}
network_acl_id = aws_network_acl.rds-external-zone.id
rule_number = each.value.priority
egress = false
protocol = "tcp"
rule_action = "allow"
cidr_block = each.value.cidr_block
from_port = each.value.from_port
to_port = each.value.to_port
}
resource "aws_network_acl_rule" "rds-egress-external-zone-rules" {
network_acl_id = aws_network_acl.rds-external-zone.id
rule_number = 100
egress = true
protocol = "tcp"
rule_action = "allow"
cidr_block = "0.0.0.0/0"
from_port = 0
to_port = 65535
}
resource "aws_network_acl" "rds-secure-zone" {
vpc_id = aws_vpc.main.id
subnet_ids = [aws_subnet.private["private-rds-1"].id, aws_subnet.private["private-rds-2"].id]
tags = {
Name = "rds-secure-zone-${var.env}"
Environment = var.env
}
}
locals {
nacl_secure_ingress_egress_infos = flatten([{
cidr_block = aws_subnet.private["private-eks-1"].cidr_block
priority = 101
from_port = var.rds_port
to_port = var.rds_port
},{
cidr_block = aws_subnet.private["private-eks-2"].cidr_block
priority = 102
from_port = var.rds_port
to_port = var.rds_port
},{
cidr_block = aws_subnet.private["private-rds-1"].cidr_block
priority = 103
from_port = 0
to_port = 65535
},{
cidr_block = aws_subnet.private["private-rds-2"].cidr_block
priority = 104
from_port = 0
to_port = 65535
},{
cidr_block = aws_subnet.public["public-rds-1"].cidr_block
priority = 105
from_port = 0
to_port = 65535
},{
cidr_block = aws_subnet.public["public-rds-2"].cidr_block
priority = 106
from_port = 0
to_port = 65535
}])
}
resource "aws_network_acl_rule" "ingress-secure-zone-rules" {
for_each = {
for subnet in local.nacl_secure_ingress_egress_infos : "${subnet.priority}" => subnet
}
network_acl_id = aws_network_acl.rds-secure-zone.id
rule_number = each.value.priority
egress = false
protocol = "tcp"
rule_action = "allow"
cidr_block = each.value.cidr_block
from_port = each.value.from_port
to_port = each.value.to_port
}
resource "aws_network_acl_rule" "egress-secure-zone-rules" {
for_each = {
for subnet in local.nacl_secure_ingress_egress_infos : "${subnet.priority}" => subnet
}
network_acl_id = aws_network_acl.rds-secure-zone.id
rule_number = each.value.priority
egress = true
protocol = "tcp"
rule_action = "allow"
cidr_block = each.value.cidr_block
from_port = 0
to_port = 65535
}
Let's configure our terraform.
Complete the infra/plan/variable.tf
variable "region" {
type = string
default = "eu-west-1"
}
variable "az" {
type = list(string)
default = ["eu-west-1a", "eu-west-1b"]
}
variable "env" {
type = string
}
variable "vpc_cidr_block" {
type = string
}
variable "internal_ip_range" {
type = string
}
Add a infra/plan/main.tf
file
data "aws_caller_identity" "current" {}
Add a infra/plan/version.tf
file
terraform {
required_version = ">= 0.12"
}
Add a infra/plan/provider.tf
file
provider "aws" {
region = var.region
}
And a infra/plan/backend.tf
terraform {
backend "s3" {
}
}
Now, export the following variables and create a bucket to save your terraform states.
export ENV=<ENV>
export REGION=eu-west-1
export EKS_CLUSTER_NAME=eks-cluster-$ENV
export AWS_PROFILE=<AWS_PROFILE>
export INTERNAL_IP_RANGE=<LOCAL_OR_INTERNAL_IP_RANGES>
export TERRAFORM_BUCKET_NAME=<BUCKET_NAME>
# Create bucket
aws s3api create-bucket \
--bucket $TERRAFORM_BUCKET_NAME \
--region $REGION \
--create-bucket-configuration LocationConstraint=$REGION
# Make it not public
aws s3api put-public-access-block \
--bucket $TERRAFORM_BUCKET_NAME \
--public-access-block-configuration "BlockPublicAcls=true,IgnorePublicAcls=true,BlockPublicPolicy=true,RestrictPublicBuckets=true"
# Enable versioning
aws s3api put-bucket-versioning \
--bucket $TERRAFORM_BUCKET_NAME \
--versioning-configuration Status=Enabled
Create a infra/envs/$ENV/terraform.tfvars
and deploy the infrastructure:
env = "<ENV>"
vpc_cidr_block = "10.0.0.0/16"
internal_ip_range = "<INTERNAL_IP_RANGE>"
az = ["eu-west-1a", "eu-west-1b"]
cd infra/envs/dev
sed -i "s,<INTERNAL_IP_RANGE>,$INTERNAL_IP_RANGE,g; s,<ENV>,$ENV,g" terraform.tfvars
terraform init \
-backend-config="bucket=$TERRAFORM_BUCKET_NAME" \
-backend-config="key=$ENV/terraform-state" \
-backend-config="region=$REGION" \
../../plan/
terraform apply ../../plan/
Let's check if all the resources have been created and are working correctly
VPC
Subnets
Internet Gateway
NAT Gateways
Conclusion
Our network is now ready to host our AWS resources. In the next part, we will focus on setting up Amazon EKS.
Top comments (8)
Hi, great work and thank you for sharing!
A quick question if I may. It says that:
"Internet facing workloads will reside on a public node group deployed on public subnets."
But right now pods with the "public" nodeSelector cannot communicate with the internet, but pods with the "private" nodeSelector can π€Or am I mistaken?
hello
thanks for your contribution :-)
In this article we didn't deploy a workloads in the public nodegroup. A workload deployed in the public nodegroup could have access to the internet thanks to the internet gateway. The workloads deployed in the private nodegroup have access to the internet thatnks to the NAT GW.
Did you deploy a workload in the public nodegroup? We should deploy only ELB in the public nodegroup.
Thank you so much for your response!
I see, so with this architecture, pods and applications should be kept on the private node group and access the internet through the NAT GW. In that case, if I wanted to deploy an Nginx ingress controller, should I deploy that to the private or public nodegroups?
Thank you again for your time and your hard work π
That's a good question. Your nginx ingress controller could create a network load balancer and it will be deployed in the public subnet.
aws.amazon.com/blogs/opensource/ne...
Even if your nginx ingress controler is deployed in the public nodegroup, it's supposed to have access to the public internet
The NACL "eks-ingress-external-zone-rules" allows access to all inbound and outbound traffic.
(You can try to replace to replace
by
A route table associates the IGW with the public subnets (eks+RDS)
So the issue could be elsewhere.
Before writing this post, I tested the solution proposed on this medium post: blog.devgenius.io/create-an-amazon...
Maybe it works with his terraform?
Thank you again for your feedback, and for the link to that article.
I tried running a simple curl from a busybox pod deployed on a node in the public subnet earlier but it didn't seem to work, I'll try changing the ports you mentioned and test again.
Is there any chance to make EKS private and public subnets ACLs less permissive? Allowing all inbound / outbound network traffic leads to certain security audit and compliance issues and I need to allow only specific minimum traffic. Not much info about this over the Internet. This article is probably the only one I found so far that touches network ACLs topic :). And btw, thank you a lot, it's anyway pretty helpful.
Thanks for your comment
Yes, you can be less permissive. You can apply the same permissions on ports as security groups:
docs.aws.amazon.com/eks/latest/use...
This article creates a private/public cluster but you can have a fully private cluster
docs.aws.amazon.com/eks/latest/use...
Hi!
I am a bit new to terraform and EKS. Could someone please explain what should be placed as
Should this be a subnet or an IP address range? And what is the logic behind this?
EDIT: Heading into part 3 of this series, I noticed that this value is called for the vpc_config.public_access_cidrs key in the eks-cluster.tf file, meaning that the range is meant to limit the IP addresses on the internet that would have access to the nodes, correct? Please someone shed some light into this.
Great work and great article btw! Thanks for sharing.