Let's dive into the different types of plots you can create using Matplotlib, along with examples:
-
Bar Chart:
- A bar chart (or bar plot) displays categorical data with rectangular bars. Each bar represents a category, and the height of the bar corresponds to the value of that category.
- Example:
import matplotlib.pyplot as plt x = [1, 3, 5, 7, 9] y1 = [5, 2, 7, 8, 2] y2 = [8, 6, 2, 5, 6] plt.bar(x, y1, label="Example one") plt.bar(x, y2, label="Example two", color='g') plt.xlabel("X-axis") plt.ylabel("Y-axis") plt.title("Bar Chart Example") plt.legend() plt.show()
- This code creates a bar chart with two sets of bars, labeled "Example one" and "Example two" ⁴.
2.Histogram:
- A histogram represents the distribution of continuous data by dividing it into bins and showing the frequency of values falling into each bin.
-
Example:
import matplotlib.pyplot as plt import numpy as np data = np.random.randn(1000) # Generate random data plt.hist(data, bins=20, edgecolor='black') plt.xlabel("Value") plt.ylabel("Frequency") plt.title("Histogram Example") plt.show()
- This code creates a histogram from random data.
3.Scatter Plot:
- A scatter plot displays individual data points as dots. It is useful for visualizing relationships between two continuous variables.
-
Example:
import matplotlib.pyplot as plt x = [10, 20, 30, 40] y = [20, 25, 35, 55] plt.scatter(x, y, marker='o', color='b', label="Data points") plt.xlabel("X-axis") plt.ylabel("Y-axis") plt.title("Scatter Plot Example") plt.legend() plt.show()
- This code creates a scatter plot with data points.
4.Pie Chart:
- A pie chart represents parts of a whole. It shows the proportion of each category relative to the total.
-
Example:
import matplotlib.pyplot as plt labels = ['Apples', 'Bananas', 'Cherries', 'Dates'] sizes = [30, 25, 20, 15] plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90) plt.axis('equal') # Equal aspect ratio ensures a circular pie chart plt.title("Pie Chart Example") plt.show()
- This code creates a simple pie chart with labeled slices ².
Remember to customize these plots further by adjusting labels, colors, and other parameters according to your specific requirements. Happy plotting! 😊📊🎨
Top comments (0)