Introduction
Building enterprise-grade AI agents requires careful consideration of component design, system architecture, and engineering practices. This article explores the key components and best practices for building robust and scalable agent systems.
1. Prompt Template Engineering
1.1 Template Design Pattern
from typing import Protocol, Dict
from jinja2 import Template
class PromptTemplate(Protocol):
def render(self, **kwargs) -> str:
pass
class JinjaPromptTemplate:
def __init__(self, template_string: str):
self.template = Template(template_string)
def render(self, **kwargs) -> str:
return self.template.render(**kwargs)
class PromptLibrary:
def __init__(self):
self.templates: Dict[str, PromptTemplate] = {}
def register_template(self, name: str, template: PromptTemplate):
self.templates[name] = template
def get_template(self, name: str) -> PromptTemplate:
return self.templates[name]
1.2 Version Control and Testing
class PromptVersion:
def __init__(self, version: str, template: str, metadata: dict):
self.version = version
self.template = template
self.metadata = metadata
self.test_cases = []
def add_test_case(self, inputs: dict, expected_output: str):
self.test_cases.append((inputs, expected_output))
def validate(self) -> bool:
template = JinjaPromptTemplate(self.template)
for inputs, expected in self.test_cases:
result = template.render(**inputs)
if not self._validate_output(result, expected):
return False
return True
2. Hierarchical Memory System
2.1 Memory Architecture
from typing import Any, List
from datetime import datetime
class MemoryEntry:
def __init__(self, content: Any, importance: float):
self.content = content
self.importance = importance
self.timestamp = datetime.now()
self.access_count = 0
class MemoryLayer:
def __init__(self, capacity: int):
self.capacity = capacity
self.memories: List[MemoryEntry] = []
def add(self, entry: MemoryEntry):
if len(self.memories) >= self.capacity:
self._evict()
self.memories.append(entry)
def _evict(self):
# Implement memory eviction strategy
self.memories.sort(key=lambda x: x.importance * x.access_count)
self.memories.pop(0)
class HierarchicalMemory:
def __init__(self):
self.working_memory = MemoryLayer(capacity=5)
self.short_term = MemoryLayer(capacity=50)
self.long_term = MemoryLayer(capacity=1000)
def store(self, content: Any, importance: float):
entry = MemoryEntry(content, importance)
if importance > 0.8:
self.working_memory.add(entry)
elif importance > 0.5:
self.short_term.add(entry)
else:
self.long_term.add(entry)
2.2 Memory Retrieval and Indexing
from typing import List, Tuple
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
class MemoryIndex:
def __init__(self, embedding_model):
self.embedding_model = embedding_model
self.embeddings = []
self.memories = []
def add(self, memory: MemoryEntry):
embedding = self.embedding_model.embed(memory.content)
self.embeddings.append(embedding)
self.memories.append(memory)
def search(self, query: str, k: int = 5) -> List[Tuple[MemoryEntry, float]]:
query_embedding = self.embedding_model.embed(query)
similarities = cosine_similarity(
[query_embedding],
self.embeddings
)[0]
top_k_indices = np.argsort(similarities)[-k:]
return [
(self.memories[i], similarities[i])
for i in top_k_indices
]
3. Observable Reasoning Chains
3.1 Chain Structure
from typing import List, Optional
from dataclasses import dataclass
import uuid
@dataclass
class ThoughtNode:
content: str
confidence: float
supporting_evidence: List[str]
class ReasoningChain:
def __init__(self):
self.chain_id = str(uuid.uuid4())
self.nodes: List[ThoughtNode] = []
self.metadata = {}
def add_thought(self, thought: ThoughtNode):
self.nodes.append(thought)
def get_path(self) -> List[str]:
return [node.content for node in self.nodes]
def get_confidence(self) -> float:
if not self.nodes:
return 0.0
return sum(n.confidence for n in self.nodes) / len(self.nodes)
3.2 Chain Monitoring and Analysis
import logging
from opentelemetry import trace
from prometheus_client import Histogram
reasoning_time = Histogram(
'reasoning_chain_duration_seconds',
'Time spent in reasoning chain'
)
class ChainMonitor:
def __init__(self):
self.tracer = trace.get_tracer(__name__)
def monitor_chain(self, chain: ReasoningChain):
with self.tracer.start_as_current_span("reasoning_chain") as span:
span.set_attribute("chain_id", chain.chain_id)
with reasoning_time.time():
for node in chain.nodes:
with self.tracer.start_span("thought") as thought_span:
thought_span.set_attribute(
"confidence",
node.confidence
)
logging.info(
f"Thought: {node.content} "
f"(confidence: {node.confidence})"
)
4. Component Decoupling and Reuse
4.1 Interface Design
from abc import ABC, abstractmethod
from typing import Generic, TypeVar
T = TypeVar('T')
class Component(ABC, Generic[T]):
@abstractmethod
def process(self, input_data: T) -> T:
pass
class Pipeline:
def __init__(self):
self.components: List[Component] = []
def add_component(self, component: Component):
self.components.append(component)
def process(self, input_data: Any) -> Any:
result = input_data
for component in self.components:
result = component.process(result)
return result
4.2 Component Registry
class ComponentRegistry:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance.components = {}
return cls._instance
def register(self, name: str, component: Component):
self.components[name] = component
def get(self, name: str) -> Optional[Component]:
return self.components.get(name)
def create_pipeline(self, component_names: List[str]) -> Pipeline:
pipeline = Pipeline()
for name in component_names:
component = self.get(name)
if component:
pipeline.add_component(component)
return pipeline
5. Performance Monitoring and Optimization
5.1 Performance Metrics
from dataclasses import dataclass
from typing import Dict
import time
@dataclass
class PerformanceMetrics:
latency: float
memory_usage: float
token_count: int
success_rate: float
class PerformanceMonitor:
def __init__(self):
self.metrics: Dict[str, List[PerformanceMetrics]] = {}
def record_operation(
self,
operation_name: str,
metrics: PerformanceMetrics
):
if operation_name not in self.metrics:
self.metrics[operation_name] = []
self.metrics[operation_name].append(metrics)
def get_average_metrics(
self,
operation_name: str
) -> Optional[PerformanceMetrics]:
if operation_name not in self.metrics:
return None
metrics_list = self.metrics[operation_name]
return PerformanceMetrics(
latency=sum(m.latency for m in metrics_list) / len(metrics_list),
memory_usage=sum(m.memory_usage for m in metrics_list) / len(metrics_list),
token_count=sum(m.token_count for m in metrics_list) / len(metrics_list),
success_rate=sum(m.success_rate for m in metrics_list) / len(metrics_list)
)
5.2 Optimization Strategies
class PerformanceOptimizer:
def __init__(self, monitor: PerformanceMonitor):
self.monitor = monitor
self.thresholds = {
'latency': 1.0, # seconds
'memory_usage': 512, # MB
'token_count': 1000,
'success_rate': 0.95
}
def analyze_performance(self, operation_name: str) -> List[str]:
metrics = self.monitor.get_average_metrics(operation_name)
if not metrics:
return []
recommendations = []
if metrics.latency > self.thresholds['latency']:
recommendations.append(
"Consider implementing caching or parallel processing"
)
if metrics.memory_usage > self.thresholds['memory_usage']:
recommendations.append(
"Optimize memory usage through batch processing"
)
if metrics.token_count > self.thresholds['token_count']:
recommendations.append(
"Implement prompt optimization to reduce token usage"
)
if metrics.success_rate < self.thresholds['success_rate']:
recommendations.append(
"Review error handling and implement retry mechanisms"
)
return recommendations
Conclusion
Building enterprise-grade Agent systems requires careful attention to:
- Structured prompt management and version control
- Efficient and scalable memory systems
- Observable and traceable reasoning processes
- Modular and reusable component design
- Comprehensive performance monitoring and optimization
Top comments (0)