DEV Community

Cover image for 🎞️ Video summary as a service 🐍
Laurent Picard for Google Cloud

Posted on • Updated on • Originally published at Medium

🎞️ Video summary as a service 🐍

👋 Hello!

Dear developers,

  • Do you like the adage "a picture is worth a thousand words"? I do!
  • Let's check if it also works for "a picture is worth a thousand frames".
  • In this tutorial, you'll see the following:
    • How to understand the content of a video in a blink,
    • in less than 300 lines of Python (3.9) code.

Here is a visual summary example, generated from a 2'42" video made of 35 sequences (also known as video shots):

Video summary example

Note: The summary is a grid where each cell is a frame representing a video shot.

🔭 Objectives

This tutorial has 2 objectives, 1 practical and 1 technical:

  • Automatically generate visual summaries of videos
  • Build a processing pipeline with these properties:
    • managed (always ready and easy to set up)
    • scalable (able to ingest several videos in parallel)
    • not costing anything when not used

🛠️ Tools

A few tools are enough:

  • Storage space for videos and results
  • A serverless solution to run the code
  • A machine learning model to analyze videos
  • A library to extract frames from videos
  • A library to generate the visual summaries

🧱 Architecture

Here is a possible architecture using 3 Google Cloud services (Cloud Storage, Cloud Functions, and Video Intelligence API):

Architecture

The processing pipeline follows these steps:

  1. You upload a video to the 1st bucket (a bucket is a storage space in the cloud)
  2. The upload event automatically triggers the 1st function
  3. The function sends a request to the Video Intelligence API to detect the shots
  4. The Video Intelligence API analyzes the video and uploads the results (annotations) to the 2nd bucket
  5. The upload event triggers the 2nd function
  6. The function downloads both annotation and video files
  7. The function renders and uploads the summary to the 3rd bucket
  8. The video summary is ready!

🐍 Python libraries

Open source client libraries let you interface with Google Cloud services in idiomatic Python. You'll use the following:

Here is a choice of 2 additional Python libraries for the graphical needs:

⚙️ Project setup

Assuming you have a Google Cloud account, you can set up the architecture from Cloud Shell with the gcloud and gsutil commands. This lets you script everything from scratch in a reproducible way.

Environment variables

# Project
PROJECT_NAME="Visual Summary"
PROJECT_ID="visual-summary-REPLACE_WITH_UNIQUE_SUFFIX"
# Cloud Storage region (https://cloud.google.com/storage/docs/locations)
GCS_REGION="europe-west1"
# Cloud Functions region (https://cloud.google.com/functions/docs/locations)
GCF_REGION="europe-west1"
# Source
GIT_REPO="cherry-on-py"
PROJECT_SRC=~/$PROJECT_ID/$GIT_REPO/gcf_video_summary

# Cloud Storage buckets (environment variables)
export VIDEO_BUCKET="b1-videos_${PROJECT_ID}"
export ANNOTATION_BUCKET="b2-annotations_${PROJECT_ID}"
export SUMMARY_BUCKET="b3-summaries_${PROJECT_ID}"
Enter fullscreen mode Exit fullscreen mode

Note: You can use your GitHub username as a unique suffix.

New project

gcloud projects create $PROJECT_ID \
  --name="$PROJECT_NAME" \
  --set-as-default
Enter fullscreen mode Exit fullscreen mode
Create in progress for [https://cloudresourcemanager.googleapis.com/v1/projects/PROJECT_ID].
Waiting for [operations/cp...] to finish...done.
Enabling service [cloudapis.googleapis.com] on project [PROJECT_ID]...
Operation "operations/acf..." finished successfully.
Updated property [core/project] to [PROJECT_ID].
Enter fullscreen mode Exit fullscreen mode

Billing account

# Link project with billing account (single account)
BILLING_ACCOUNT=$(gcloud beta billing accounts list \
    --format 'value(name)')
# Link project with billing account (specific one among multiple accounts)
BILLING_ACCOUNT=$(gcloud beta billing accounts list \
    --format 'value(name)' \
    --filter "displayName='My Billing Account'")

gcloud beta billing projects link $PROJECT_ID --billing-account $BILLING_ACCOUNT
Enter fullscreen mode Exit fullscreen mode
billingAccountName: billingAccounts/XXXXXX-YYYYYY-ZZZZZZ
billingEnabled: true
name: projects/PROJECT_ID/billingInfo
projectId: PROJECT_ID
Enter fullscreen mode Exit fullscreen mode

Buckets

# Create buckets with uniform bucket-level access
gsutil mb -b on -c regional -l $GCS_REGION gs://$VIDEO_BUCKET
gsutil mb -b on -c regional -l $GCS_REGION gs://$ANNOTATION_BUCKET
gsutil mb -b on -c regional -l $GCS_REGION gs://$SUMMARY_BUCKET
Enter fullscreen mode Exit fullscreen mode
Creating gs://VIDEO_BUCKET/...
Creating gs://ANNOTATION_BUCKET/...
Creating gs://SUMMARY_BUCKET/...
Enter fullscreen mode Exit fullscreen mode

You can check how it looks like in the Cloud Console:

Cloud Storage buckets

Service account

Create a service account. This is for development purposes only (not needed for production). This provides you with credentials to run your code locally.

mkdir ~/$PROJECT_ID
cd ~/$PROJECT_ID

SERVICE_ACCOUNT_NAME="dev-service-account"
SERVICE_ACCOUNT="${SERVICE_ACCOUNT_NAME}@${PROJECT_ID}.iam.gserviceaccount.com"
gcloud iam service-accounts create $SERVICE_ACCOUNT_NAME
gcloud iam service-accounts keys create ~/$PROJECT_ID/key.json --iam-account $SERVICE_ACCOUNT
Enter fullscreen mode Exit fullscreen mode
Created service account [SERVICE_ACCOUNT_NAME].
created key [...] of type [json] as [~/PROJECT_ID/key.json] for [SERVICE_ACCOUNT]
Enter fullscreen mode Exit fullscreen mode

Set the GOOGLE_APPLICATION_CREDENTIALS environment variable and check that it points to the service account key. When you run the application code in the current shell session, client libraries will use these credentials for authentication. If you open a new shell session, set the variable again.

export GOOGLE_APPLICATION_CREDENTIALS=~/$PROJECT_ID/key.json
cat $GOOGLE_APPLICATION_CREDENTIALS
Enter fullscreen mode Exit fullscreen mode
{
  "type": "service_account",
  "project_id": "PROJECT_ID",
  "private_key_id": "...",
  "private_key": "-----BEGIN PRIVATE KEY-----\n...",
  "client_email": "SERVICE_ACCOUNT",
  ...
}
Enter fullscreen mode Exit fullscreen mode

Authorize the service account to access the buckets:

IAM_BINDING="serviceAccount:${SERVICE_ACCOUNT}:roles/storage.objectAdmin"
gsutil iam ch $IAM_BINDING gs://$VIDEO_BUCKET
gsutil iam ch $IAM_BINDING gs://$ANNOTATION_BUCKET
gsutil iam ch $IAM_BINDING gs://$SUMMARY_BUCKET
Enter fullscreen mode Exit fullscreen mode

APIs

A few APIs are enabled by default:

gcloud services list
Enter fullscreen mode Exit fullscreen mode
NAME                              TITLE
bigquery.googleapis.com           BigQuery API
bigquerystorage.googleapis.com    BigQuery Storage API
cloudapis.googleapis.com          Google Cloud APIs
clouddebugger.googleapis.com      Cloud Debugger API
cloudtrace.googleapis.com         Cloud Trace API
datastore.googleapis.com          Cloud Datastore API
logging.googleapis.com            Cloud Logging API
monitoring.googleapis.com         Cloud Monitoring API
servicemanagement.googleapis.com  Service Management API
serviceusage.googleapis.com       Service Usage API
sql-component.googleapis.com      Cloud SQL
storage-api.googleapis.com        Google Cloud Storage JSON API
storage-component.googleapis.com  Cloud Storage
Enter fullscreen mode Exit fullscreen mode

Enable the Video Intelligence, Cloud Functions, and Cloud Build APIs:

gcloud services enable \
  videointelligence.googleapis.com \
  cloudfunctions.googleapis.com \
  cloudbuild.googleapis.com
Enter fullscreen mode Exit fullscreen mode
Operation "operations/acf..." finished successfully.
Enter fullscreen mode Exit fullscreen mode

Note: Cloud Build generates container images for Cloud Functions upon deployment.

Source code

Retrieve the source code:

cd ~/$PROJECT_ID
git clone https://github.com/PicardParis/$GIT_REPO.git
Enter fullscreen mode Exit fullscreen mode
Cloning into 'GIT_REPO'...
...
Enter fullscreen mode Exit fullscreen mode

🧠 Video analysis

Video shot detection

The Video Intelligence API is a pre-trained machine learning model that can analyze videos. One of the multiple features is video shot detection. For the 1st Cloud Function, here is a possible core function calling annotate_video() with the SHOT_CHANGE_DETECTION feature:

from google.cloud import storage, videointelligence

def launch_shot_detection(video_uri: str, annot_bucket: str):
    """Detect video shots (asynchronous operation)

    Results will be stored in <annot_uri> with this naming convention:
    - video_uri: gs://video_bucket/path/to/video.ext
    - annot_uri: gs://annot_bucket/video_bucket/path/to/video.ext.json
    """
    print(f"Launching shot detection for <{video_uri}>...")
    features = [videointelligence.Feature.SHOT_CHANGE_DETECTION]
    video_blob = storage.Blob.from_string(video_uri)
    video_bucket = video_blob.bucket.name
    path_to_video = video_blob.name
    annot_uri = f"gs://{annot_bucket}/{video_bucket}/{path_to_video}.json"
    request = dict(features=features, input_uri=video_uri, output_uri=annot_uri)

    video_client = videointelligence.VideoIntelligenceServiceClient()
    video_client.annotate_video(request)
Enter fullscreen mode Exit fullscreen mode

Local development and tests

Before deploying the function, you need to develop and test it. Create a Python 3 virtual environment and activate it:

cd ~/$PROJECT_ID
python3 -m venv venv
source venv/bin/activate
Enter fullscreen mode Exit fullscreen mode

Install the dependencies:

pip install -r $PROJECT_SRC/gcf1_detect_shots/requirements.txt
Enter fullscreen mode Exit fullscreen mode

Check the dependencies:

pip list
Enter fullscreen mode Exit fullscreen mode
Package                        Version
------------------------------ ----------
...
google-cloud-storage           1.42.3
google-cloud-videointelligence 2.3.3
...
Enter fullscreen mode Exit fullscreen mode

You can use the main scope to test the function in script mode:

import os

ANNOTATION_BUCKET = os.getenv("ANNOTATION_BUCKET", "")
assert ANNOTATION_BUCKET, "Undefined ANNOTATION_BUCKET environment variable"

if __name__ == "__main__":
    # Local tests only (service account needed)
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "video_uri", type=str, help="gs://video_bucket/path/to/video.ext"
    )
    args = parser.parse_args()
    launch_shot_detection(args.video_uri, ANNOTATION_BUCKET)
Enter fullscreen mode Exit fullscreen mode

Note: You have already exported the ANNOTATION_BUCKET environment variable earlier in the shell session; you will also use it later at deployment stage. This makes the code generic and lets you reuse it independently of the output bucket.

Test the function:

VIDEO_PATH="cloud-samples-data/video/gbikes_dinosaur.mp4"
VIDEO_URI="gs://$VIDEO_PATH"
python $PROJECT_SRC/gcf1_detect_shots/main.py $VIDEO_URI
Enter fullscreen mode Exit fullscreen mode
Launching shot detection for <gs://cloud-samples-data/video/gbikes_dinosaur.mp4>...
Enter fullscreen mode Exit fullscreen mode

Note: The test video <gbikes_dinosaur.mp4> is located in an external bucket. This works because the video is publicly accessible.

Wait a moment and check that the annotations have been generated:

gsutil ls -r gs://$ANNOTATION_BUCKET
Enter fullscreen mode Exit fullscreen mode
964  YYYY-MM-DDThh:mm:ssZ  gs://ANNOTATION_BUCKET/VIDEO_PATH.json
TOTAL: 1 objects, 964 bytes (964 B)
Enter fullscreen mode Exit fullscreen mode

Check the last 200 bytes of the annotation file:

gsutil cat -r -200 gs://$ANNOTATION_BUCKET/$VIDEO_PATH.json
Enter fullscreen mode Exit fullscreen mode
}
    }, {
      "start_time_offset": {
        "seconds": 28,
        "nanos": 166666000
      },
      "end_time_offset": {
        "seconds": 42,
        "nanos": 766666000
      }
    } ]
  } ]
}
Enter fullscreen mode Exit fullscreen mode

Note: Those are the start and end positions of the last video shot. Everything seems fine.

Clean up when you're finished:

gsutil rm gs://$ANNOTATION_BUCKET/$VIDEO_PATH.json

deactivate

rm -rf venv
Enter fullscreen mode Exit fullscreen mode

Function entry point

def gcf_detect_shots(data, context):
    """Cloud Function triggered by a new Cloud Storage object"""
    video_bucket = data["bucket"]
    path_to_video = data["name"]
    video_uri = f"gs://{video_bucket}/{path_to_video}"
    launch_shot_detection(video_uri, ANNOTATION_BUCKET)
Enter fullscreen mode Exit fullscreen mode

Note: This function will be called whenever a video is uploaded to the bucket defined as a trigger.

Function deployment

Deploy the 1st function:

GCF_NAME="gcf1_detect_shots"
GCF_SOURCE="$PROJECT_SRC/gcf1_detect_shots"
GCF_ENTRY_POINT="gcf_detect_shots"
GCF_TRIGGER_BUCKET="$VIDEO_BUCKET"
GCF_ENV_VARS="ANNOTATION_BUCKET=$ANNOTATION_BUCKET"
GCF_MEMORY="128MB"

gcloud functions deploy $GCF_NAME \
  --runtime python39 \
  --source $GCF_SOURCE \
  --entry-point $GCF_ENTRY_POINT \
  --update-env-vars $GCF_ENV_VARS \
  --trigger-bucket $GCF_TRIGGER_BUCKET \
  --region $GCF_REGION \
  --memory $GCF_MEMORY \
  --quiet
Enter fullscreen mode Exit fullscreen mode

Note: The default memory allocated for a Cloud Function is 256 MB (possible values are 128MB, 256MB, 512MB, 1024MB, and 2048MB). As the function has no memory or CPU needs (it sends a simple API request), the minimum memory setting is enough.

Deploying function (may take a while - up to 2 minutes)...done.
availableMemoryMb: 128
entryPoint: gcf_detect_shots
environmentVariables:
  ANNOTATION_BUCKET: b2-annotations...
eventTrigger:
  eventType: google.storage.object.finalize
...
status: ACTIVE
timeout: 60s
updateTime: 'YYYY-MM-DDThh:mm:ss.mmmZ'
versionId: '1'
Enter fullscreen mode Exit fullscreen mode

Note: The ANNOTATION_BUCKET environment variable is defined with the --update-env-vars flag. Using an environment variable lets you deploy the exact same code with different trigger and output buckets.

Here is how it looks like in the Cloud Console:

Cloud Functions

Production tests

Make sure to test the function in production. Copy a video into the video bucket:

VIDEO_NAME="gbikes_dinosaur.mp4"
SRC_URI="gs://cloud-samples-data/video/$VIDEO_NAME"
DST_URI="gs://$VIDEO_BUCKET/$VIDEO_NAME"

gsutil cp $SRC_URI $DST_URI
Enter fullscreen mode Exit fullscreen mode
Copying gs://cloud-samples-data/video/gbikes_dinosaur.mp4 [Content-Type=video/mp4]...
- [1 files][ 62.0 MiB/ 62.0 MiB]
Operation completed over 1 objects/62.0 MiB.
Enter fullscreen mode Exit fullscreen mode

Query the logs to check that the function has been triggered:

gcloud functions logs read --region $GCF_REGION
Enter fullscreen mode Exit fullscreen mode
LEVEL  NAME               EXECUTION_ID  TIME_UTC  LOG
D      gcf1_detect_shots  ...           ...       Function execution started
I      gcf1_detect_shots  ...           ...       Launching shot detection for <gs://VIDEO_BUCKET/VIDEO_NAME>...
D      gcf1_detect_shots  ...           ...       Function execution took 874 ms, finished with status: 'ok'
Enter fullscreen mode Exit fullscreen mode

Wait a moment and check the annotation bucket:

gsutil ls -r gs://$ANNOTATION_BUCKET
Enter fullscreen mode Exit fullscreen mode

You should see the annotation file:

gs://ANNOTATION_BUCKET/VIDEO_BUCKET/:
gs://ANNOTATION_BUCKET/VIDEO_BUCKET/VIDEO_NAME.json
Enter fullscreen mode Exit fullscreen mode

The 1st function is operational!

🎞️ Visual Summary

Code structure

It's interesting to split the code into 2 main classes:

  • StorageHelper for local file and cloud storage object management
  • VideoProcessor for graphical processings

Here is a possible core function:

class VideoProcessor:
    @staticmethod
    def generate_summary(annot_uri: str, output_bucket: str):
        """ Generate a video summary from video shot annotations """
        try:
            with StorageHelper(annot_uri, output_bucket) as storage:
                with VideoProcessor(storage) as video_proc:
                    print("Generating summary...")
                    image = video_proc.render_summary()
                    video_proc.upload_summary_as_jpeg(image)
        except Exception:
            logging.exception("Could not generate summary from <%s>", annot_uri)
Enter fullscreen mode Exit fullscreen mode

Note: If exceptions are raised, it's handy to log them with logging.exception() to get a stack trace in production logs.

Class StorageHelper

The class manages the following:

  • The retrieval and parsing of video shot annotations
  • The download of source videos
  • The upload of generated visual summaries
  • File names
class StorageHelper:
    """Local+Cloud storage helper

    - Uses a temp dir for local processing (e.g. video frame extraction)
    - Paths are relative to this temp dir (named after the output bucket)

    Naming convention:
    - video_uri:                 gs://video_bucket/path/to/video.ext
    - annot_uri:    gs://annot_bucket/video_bucket/path/to/video.ext.json
    - video_path:                     video_bucket/path/to/video.ext
    - summary_path:                   video_bucket/path/to/video.ext.SUFFIX
    - summary_uri: gs://output_bucket/video_bucket/path/to/video.ext.SUFFIX
    """

    client = storage.Client()
    video_shots: list[VideoShot]
    video_path: Path
    video_local_path: Path
    upload_bucket: storage.Bucket

    def __init__(self, annot_uri: str, output_bucket: str):
        if not annot_uri.endswith(ANNOT_EXT):
            raise RuntimeError(f"annot_uri must end with <{ANNOT_EXT}>")
        self.video_shots = self.get_video_shots(annot_uri)
        self.video_path = self.video_path_from_uri(annot_uri)
        temp_root = Path(tempfile.gettempdir(), output_bucket)
        temp_root.mkdir(parents=True, exist_ok=True)
        self.video_local_path = temp_root.joinpath(self.video_path)
        self.upload_bucket = self.client.bucket(output_bucket)
Enter fullscreen mode Exit fullscreen mode

The source video is handled in the with statement context manager:

    def __enter__(self):
        self.download_video()
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.video_local_path.unlink()
Enter fullscreen mode Exit fullscreen mode

Note: Once downloaded, the video uses memory space in the /tmp RAM disk (the only writable space for the serverless function). It's best to delete temporary files when they're not needed anymore, to avoid potential out-of-memory errors on future invocations of the function.

The video annotations can be retrieved with the methods storage.Blob.download_as_text() and json.loads():

    def get_video_shots(self, annot_uri: str) -> list[VideoShot]:
        json_blob = storage.Blob.from_string(annot_uri, self.client)
        api_response: dict = json.loads(json_blob.download_as_text())
        single_video_results: dict = api_response["annotation_results"][0]
        annotations: list = single_video_results["shot_annotations"]
        return [VideoShot.from_dict(annotation) for annotation in annotations]
Enter fullscreen mode Exit fullscreen mode

The parsing is handled with this VideoShot helper class:

class VideoShot(NamedTuple):
    """Video shot start/end positions in nanoseconds"""

    pos1_ns: int
    pos2_ns: int
    NANOS_PER_SECOND = 10 ** 9

    @classmethod
    def from_dict(cls, annotation: dict) -> "VideoShot":
        def time_offset_in_ns(time_offset) -> int:
            seconds: int = time_offset.get("seconds", 0)
            nanos: int = time_offset.get("nanos", 0)
            return seconds * cls.NANOS_PER_SECOND + nanos

        pos1_ns = time_offset_in_ns(annotation["start_time_offset"])
        pos2_ns = time_offset_in_ns(annotation["end_time_offset"])
        return cls(pos1_ns, pos2_ns)
Enter fullscreen mode Exit fullscreen mode

The naming convention was chosen to keep consistent object paths between the different buckets. This also lets you deduce the video path from the annotation URI:

    def video_path_from_uri(self, annot_uri: str) -> Path:
        annot_blob = storage.Blob.from_string(annot_uri)
        return Path(annot_blob.name[: -len(ANNOT_EXT)])
Enter fullscreen mode Exit fullscreen mode

The video is directly downloaded with storage.Blob.download_to_filename():

    def download_video(self):
        video_uri = f"gs://{self.video_path.as_posix()}"
        blob = storage.Blob.from_string(video_uri, self.client)
        print(f"Downloading -> {self.video_local_path}")
        self.video_local_path.parent.mkdir(parents=True, exist_ok=True)
        blob.download_to_filename(self.video_local_path)
Enter fullscreen mode Exit fullscreen mode

On the opposite, results can be uploaded with storage.Blob.upload_from_string():

    def upload_summary(self, image_bytes: bytes, image_type: str):
        path = self.summary_path(image_type)
        blob = self.upload_bucket.blob(path.as_posix())
        content_type = f"image/{image_type}"
        print(f"Uploading -> {blob.name}")
        blob.upload_from_string(image_bytes, content_type)
Enter fullscreen mode Exit fullscreen mode

Note: Pillow supports working with memory images, which avoids having to manage local files.

And finally, here is a possible naming convention for the summary files:

    def summary_path(self, image_type: str) -> Path:
        video_name = self.video_path.name
        shot_count = len(self.video_shots)
        suffix = f"summary{shot_count:03d}.{image_type}"
        summary_name = f"{video_name}.{suffix}"
        return Path(self.video_path.parent, summary_name)
Enter fullscreen mode Exit fullscreen mode

Class VideoProcessor

The class manages the following:

  • Video frame extraction
  • Visual summary generation
import cv2 as cv
from PIL import Image

from storage_helper import StorageHelper

PilImage = Image.Image
ImageSize = NamedTuple("ImageSize", [("w", int), ("h", int)])


class VideoProcessor:
    storage: StorageHelper
    video: cv.VideoCapture
    cell_size: ImageSize
    grid_size: ImageSize

    def __init__(self, storage: StorageHelper):
        self.storage = storage
Enter fullscreen mode Exit fullscreen mode

Opening and closing the video is handled in the with statement context manager:

    def __enter__(self):
        video_path = self.storage.video_local_path
        self.video = cv.VideoCapture(str(video_path))
        if not self.video.isOpened():
            raise RuntimeError(f"Could not open video <{video_path}>")
        self.compute_grid_dimensions()
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.video.release()
Enter fullscreen mode Exit fullscreen mode

The video summary is a grid of cells which can be rendered in a single loop with two generators:

    def render_summary(self, shot_ratio: float = 0.5) -> PilImage:
        grid_img = Image.new("RGB", self.grid_size, RGB_BACKGROUND)

        img_and_pos_iter = zip(self.gen_cell_img(shot_ratio), self.gen_cell_pos())
        for cell_img, cell_pos in img_and_pos_iter:
            cell_img.thumbnail(self.cell_size)  # Makes it smaller if needed
            grid_img.paste(cell_img, cell_pos)

        return grid_img
Enter fullscreen mode Exit fullscreen mode

Note: shot_ratio is set to 0.5 by default to extract video shot middle frames.

The first generator yields cell images:

    def gen_cell_img(self, shot_ratio: float) -> Iterator[PilImage]:
        assert 0.0 <= shot_ratio <= 1.0
        MS_IN_NS = 10 ** 6
        for video_shot in self.storage.video_shots:
            pos1_ns, pos2_ns = video_shot
            pos_ms = (pos1_ns + shot_ratio * (pos2_ns - pos1_ns)) / MS_IN_NS
            yield self.frame_at_position(pos_ms)
Enter fullscreen mode Exit fullscreen mode

The second generator yields cell positions:

    def gen_cell_pos(self) -> Iterator[tuple[int, int]]:
        cell_x, cell_y = 0, 0
        while True:
            yield cell_x, cell_y
            cell_x += self.cell_size.w
            if self.grid_size.w <= cell_x:  # Move to next row?
                cell_x, cell_y = 0, cell_y + self.cell_size.h
Enter fullscreen mode Exit fullscreen mode

OpenCV easily allows extracting video frames at a given position:

    def frame_at_position(self, pos_ms: float) -> PilImage:
        self.video.set(cv.CAP_PROP_POS_MSEC, pos_ms)
        _, cv_frame = self.video.read()
        return Image.fromarray(cv.cvtColor(cv_frame, cv.COLOR_BGR2RGB))
Enter fullscreen mode Exit fullscreen mode

Choosing the summary grid composition is arbitrary. Here is an example to compose a summary preserving the video proportions:

    def compute_grid_dimensions(self):
        shot_count = len(self.storage.video_shots)
        if shot_count < 1:
            raise RuntimeError(f"Expected 1+ video shots (got {shot_count})")
        # Try to preserve the video aspect ratio
        # Consider cells as pixels and try to fit them in a square
        cols = rows = int(shot_count ** 0.5 + 0.5)
        if cols * rows < shot_count:
            cols += 1
        cell_w = int(self.video.get(cv.CAP_PROP_FRAME_WIDTH))
        cell_h = int(self.video.get(cv.CAP_PROP_FRAME_HEIGHT))
        if SUMMARY_MAX_SIZE.w < cell_w * cols:
            scale = SUMMARY_MAX_SIZE.w / (cell_w * cols)
            cell_w = int(scale * cell_w)
            cell_h = int(scale * cell_h)
        self.cell_size = ImageSize(cell_w, cell_h)
        self.grid_size = ImageSize(cell_w * cols, cell_h * rows)
Enter fullscreen mode Exit fullscreen mode

Finally, Pillow gives full control on image serializations:

    def upload_summary_as_jpeg(self, image: PilImage):
        mem_file = BytesIO()
        image_type = "jpeg"
        jpeg_save_parameters = dict(optimize=True, progressive=True)
        image.save(mem_file, format=image_type, **jpeg_save_parameters)

        image_bytes = mem_file.getvalue()
        self.storage.upload_summary(image_bytes, image_type)
Enter fullscreen mode Exit fullscreen mode

Note: Working with in-memory images avoids managing local files and uses less memory.

Local development and tests

You can use the main scope to test the function in script mode:

import os

from video_processor import VideoProcessor

SUMMARY_BUCKET = os.getenv("SUMMARY_BUCKET", "")
assert SUMMARY_BUCKET, "Undefined SUMMARY_BUCKET environment variable"

if __name__ == "__main__":
    # Local tests only (service account needed)
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "annot_uri", type=str, help="gs://annotation_bucket/path/to/video.ext.json"
    )
    args = parser.parse_args()
    VideoProcessor.generate_summary(args.annot_uri, SUMMARY_BUCKET)
Enter fullscreen mode Exit fullscreen mode

Test the function:

cd ~/$PROJECT_ID
python3 -m venv venv
source venv/bin/activate

pip install -r $PROJECT_SRC/gcf2_generate_summary/requirements.txt

VIDEO_NAME="gbikes_dinosaur.mp4"
ANNOTATION_URI="gs://$ANNOTATION_BUCKET/$VIDEO_BUCKET/$VIDEO_NAME.json"

python $PROJECT_SRC/gcf2_generate_summary/main.py $ANNOTATION_URI
Enter fullscreen mode Exit fullscreen mode
Downloading -> /tmp/SUMMARY_BUCKET/VIDEO_BUCKET/VIDEO_NAME
Generating summary...
Uploading -> VIDEO_BUCKET/VIDEO_NAME.summary004.jpeg
Enter fullscreen mode Exit fullscreen mode

Note: The uploaded video summary shows 4 shots.

Clean up:

deactivate
rm -rf venv
Enter fullscreen mode Exit fullscreen mode

Function entry point

def gcf_generate_summary(data, context):
    """Cloud Function triggered by a new Cloud Storage object"""
    annotation_bucket = data["bucket"]
    path_to_annotation = data["name"]
    annot_uri = f"gs://{annotation_bucket}/{path_to_annotation}"
    VideoProcessor.generate_summary(annot_uri, SUMMARY_BUCKET)
Enter fullscreen mode Exit fullscreen mode

Note: This function will be called whenever an annotation file is uploaded to the bucket defined as a trigger.

Function deployment

GCF_NAME="gcf2_generate_summary"
GCF_SOURCE="$PROJECT_SRC/gcf2_generate_summary"
GCF_ENTRY_POINT="gcf_generate_summary"
GCF_TRIGGER_BUCKET="$ANNOTATION_BUCKET"
GCF_ENV_VARS="SUMMARY_BUCKET=$SUMMARY_BUCKET"
GCF_TIMEOUT="540s"
GCF_MEMORY="512MB"

gcloud functions deploy $GCF_NAME \
  --runtime python39 \
  --source $GCF_SOURCE \
  --entry-point $GCF_ENTRY_POINT \
  --update-env-vars $GCF_ENV_VARS \
  --trigger-bucket $GCF_TRIGGER_BUCKET \
  --region $GCF_REGION \
  --timeout $GCF_TIMEOUT \
  --memory $GCF_MEMORY \
  --quiet
Enter fullscreen mode Exit fullscreen mode

Notes:

  • The default timeout for a Cloud Function is 60 seconds. As you're deploying a background function with potentially long processings, set it to the maximum value (540 seconds = 9 minutes).
  • You also need to bump up the memory a little for the video and image processings. Depending on the size of your videos and the maximum resolution of your output summaries, or if you need to generate the summary faster (memory size and vCPU speed are correlated), you might use a higher value (1024MB or 2048MB).
Deploying function (may take a while - up to 2 minutes)...done.
availableMemoryMb: 512
entryPoint: gcf_generate_summary
environmentVariables:
  SUMMARY_BUCKET: b3-summaries...
...
status: ACTIVE
timeout: 540s
updateTime: 'YYYY-MM-DDThh:mm:ss.mmmZ'
versionId: '1'
Enter fullscreen mode Exit fullscreen mode

Here is how it looks like in the Cloud Console:

Cloud Functions 2

Production tests

Make sure to test the function in production. You can upload an annotation file in the 2nd bucket:

VIDEO_NAME="gbikes_dinosaur.mp4"
ANNOTATION_FILE="$VIDEO_NAME.json"
ANNOTATION_URI="gs://$ANNOTATION_BUCKET/$VIDEO_BUCKET/$ANNOTATION_FILE"
gsutil cp $ANNOTATION_URI .
gsutil cp $ANNOTATION_FILE $ANNOTATION_URI
rm $ANNOTATION_FILE
Enter fullscreen mode Exit fullscreen mode

Note: This reuses the previous local test annotation file and overwrites it. Overwriting a file in a bucket also triggers attached functions.

Wait a few seconds and query the logs to check that the function has been triggered:

gcloud functions logs read --region $GCF_REGION
Enter fullscreen mode Exit fullscreen mode
LEVEL  NAME                   EXECUTION_ID  TIME_UTC  LOG
...
D      gcf2_generate_summary  ...           ...       Function execution started
I      gcf2_generate_summary  ...           ...       Downloading -> /tmp/SUMMARY_BUCKET/VIDEO_BUCKET/VIDEO_NAME
I      gcf2_generate_summary  ...           ...       Generating summary...
I      gcf2_generate_summary  ...           ...       Uploading -> VIDEO_BUCKET/VIDEO_NAME.summary004.jpeg
D      gcf2_generate_summary  ...           ...       Function execution took 11591 ms, finished with status: 'ok'
Enter fullscreen mode Exit fullscreen mode

The 2nd function is operational and the pipeline is in place! You can now do end-to-end tests by copying new videos in the 1st bucket.

Results

Download the generated summary on your computer:

cd ~/$PROJECT_ID
gsutil cp -r gs://$SUMMARY_BUCKET/**.jpeg .
cloudshell download *.jpeg
Enter fullscreen mode Exit fullscreen mode

Here is the visual summary for gbikes_dinosaur.mp4 (4 detected shots):

Visual summary for gbikes_dinosaur.mp4

You can also directly preview the file from the Cloud Console:

Video summary


🍒 Cherry on the Py 🐍

Now, the icing on the cake (or the "cherry on the pie" as we say in French)...

  • Based on the same architecture and code, you can add a few features:
    • Trigger the processing for videos from other buckets
    • Generate summaries in multiple formats (such as JPEG, PNG, WEBP)
    • Generate animated summaries (also in multiple formats, such as GIF, PNG, WEBP)
  • Enrich the architecture to duplicate 2 items:
    • The video shot detection function, to get it to run as an HTTP endpoint
    • The summary generation function to handle animated images
  • Adapt the code to support the new features:
    • An animated parameter to generate still or animated summaries
    • Save and upload the results in multiple formats

Architecture (v2)

Architecture (v2)

  • A. Video shot detection can also be triggered manually with an HTTP GET request
  • B. Still and animated summaries are generated in 2 functions in parallel
  • C. Summaries are uploaded in multiple image formats

HTTP entry point

def gcf_detect_shots_http(request):
    """Cloud Function triggered by an HTTP GET request"""
    if request.method != "GET":
        return ("Please use a GET request", 403)
    if not request.args or "video_uri" not in request.args:
        return ('Please specify a "video_uri" parameter', 400)
    video_uri = request.args["video_uri"]
    launch_shot_detection(video_uri, ANNOTATION_BUCKET)
    return f"Launched shot detection for <{video_uri}>"
Enter fullscreen mode Exit fullscreen mode

Note: This is the same code as gcf_detect_shots with the video URI parameter provided from a GET request.

Function deployment

GCF_NAME="gcf1_detect_shots_http"
GCF_SOURCE="$PROJECT_SRC/gcf1_detect_shots"
GCF_ENTRY_POINT="gcf_detect_shots_http"
GCF_TRIGGER_BUCKET="$VIDEO_BUCKET"
GCF_ENV_VARS="ANNOTATION_BUCKET=$ANNOTATION_BUCKET"
GCF_MEMORY="128MB"

gcloud functions deploy $GCF_NAME \
  --runtime python39 \
  --source $GCF_SOURCE \
  --entry-point $GCF_ENTRY_POINT \
  --update-env-vars $GCF_ENV_VARS \
  --trigger-http \
  --region $GCF_REGION \
  --memory $GCF_MEMORY \
  --quiet
Enter fullscreen mode Exit fullscreen mode

Here is how it looks like in the Cloud Console:

Cloud Functions 3

Animation support

Add an animated option in the core function:

class VideoProcessor:
    @staticmethod
-   def generate_summary(annot_uri: str, output_bucket: str):
+   def generate_summary(annot_uri: str, output_bucket: str, animated=False):
        """ Generate a video summary from video shot annotations """
        try:
            with StorageHelper(annot_uri, output_bucket) as storage:
                with VideoProcessor(storage) as video_proc:
                    print("Generating summary...")
-                   image = video_proc.render_summary()
-                   video_proc.upload_summary_as_jpeg(image)
+                   if animated:
+                       video_proc.generate_summary_animations()
+                   else:
+                       video_proc.generate_summary_stills()
        except Exception:
            logging.exception("Could not generate summary from <%s>", annot_uri)
Enter fullscreen mode Exit fullscreen mode

Define the formats you're interested in generating:

ImageFormat = NamedTuple("ImageFormat", [("type", str), ("save_parameters", dict)])

IMAGE_JPEG = ImageFormat("jpeg", dict(optimize=True, progressive=True))
IMAGE_GIF = ImageFormat("gif", dict(optimize=True))
IMAGE_PNG = ImageFormat("png", dict(optimize=True))
IMAGE_WEBP = ImageFormat("webp", dict(lossless=False, quality=80, method=1))
SUMMARY_STILL_FORMATS = (IMAGE_JPEG, IMAGE_PNG, IMAGE_WEBP)
SUMMARY_ANIMATED_FORMATS = (IMAGE_GIF, IMAGE_PNG, IMAGE_WEBP)
Enter fullscreen mode Exit fullscreen mode

Add support to generate still and animated summaries in different formats:

    def generate_summary_stills(self):
        image = self.render_summary()
        for image_format in SUMMARY_STILL_FORMATS:
            self.upload_summary([image], image_format)

    def generate_summary_animations(self):
        frame_count = ANIMATION_FRAMES
        images = []
        for frame_index in range(frame_count):
            shot_ratio = (frame_index + 1) / (frame_count + 1)
            print(f"shot_ratio: {shot_ratio:.0%}")
            image = self.render_summary(shot_ratio)
            images.append(image)
        for image_format in SUMMARY_ANIMATED_FORMATS:
            self.upload_summary(images, image_format)
Enter fullscreen mode Exit fullscreen mode

The serialization can still take place in a single function:

    def upload_summary(self, images: list[PilImage], image_format: ImageFormat):
        if not images:
            raise RuntimeError("Empty image list")
        mem_file = BytesIO()
        image_type = image_format.type
        save_parameters = image_format.save_parameters.copy()
        if animated := 1 < len(images):
            save_parameters |= dict(
                save_all=True,
                append_images=images[1:],
                duration=ANIMATION_FRAME_DURATION_MS,
                loop=0,  # Infinite loop
            )
        images[0].save(mem_file, format=image_type, **save_parameters)

        image_bytes = mem_file.getvalue()
        self.storage.upload_summary(image_bytes, image_type, animated)
Enter fullscreen mode Exit fullscreen mode

Note: Pillow is both versatile and consistent, allowing for significant and clean code factorization.

Add an animated optional parameter to the StorageHelper class:

class StorageHelper:
-    def upload_summary(self, image_bytes: bytes, image_type: str):
-       path = self.summary_path(image_type)
+    def upload_summary(self, image_bytes: bytes, image_type: str, animated=False):
+       path = self.summary_path(image_type, animated)
        blob = self.upload_bucket.blob(path.as_posix())
        content_type = f"image/{image_type}"
        print(f"Uploading -> {blob.name}")
        blob.upload_from_string(image_bytes, content_type)

-   def summary_path(self, image_type: str) -> Path:
+   def summary_path(self, image_type: str, animated=False) -> Path:
        video_name = self.video_path.name
        shot_count = self.shot_count()
-       suffix = f"summary{shot_count:03d}.{image_type}"
+       still_or_anim = "anim" if animated else "still"
+       suffix = f"summary{shot_count:03d}_{still_or_anim}.{image_type}"
        summary_name = f'{video_name}.{suffix}'
        return Path(self.video_path.parent, summary_name)
Enter fullscreen mode Exit fullscreen mode

And finally, add an ANIMATED optional environment variable in the entry point:

...
+ANIMATED = os.getenv("ANIMATED", "0") == "1"

def gcf_generate_summary(data, context):
    ...
-   VideoProcessor.generate_summary(annot_uri, SUMMARY_BUCKET)
+   VideoProcessor.generate_summary(annot_uri, SUMMARY_BUCKET, ANIMATED)

if __name__ == '__main__':
    ...
-   VideoProcessor.generate_summary(args.annot_uri, SUMMARY_BUCKET)
+   VideoProcessor.generate_summary(args.annot_uri, SUMMARY_BUCKET, ANIMATED)
Enter fullscreen mode Exit fullscreen mode

Function deployment

Duplicate the 2nd function with the additional ANIMATED environment variable:

GCF_NAME="gcf2_generate_summary_animated"
GCF_SOURCE="$PROJECT_SRC/gcf2_generate_summary"
GCF_ENTRY_POINT="gcf_generate_summary"
GCF_TRIGGER_BUCKET="$ANNOTATION_BUCKET"
GCF_ENV_VARS1="SUMMARY_BUCKET=$SUMMARY_BUCKET"
GCF_ENV_VARS2="ANIMATED=1"
GCF_TIMEOUT="540s"
GCF_MEMORY="2048MB"

gcloud functions deploy $GCF_NAME \
  --runtime python39 \
  --source $GCF_SOURCE \
  --entry-point $GCF_ENTRY_POINT \
  --update-env-vars $GCF_ENV_VARS1 \
  --update-env-vars $GCF_ENV_VARS2 \
  --trigger-bucket $GCF_TRIGGER_BUCKET \
  --region $GCF_REGION \
  --timeout $GCF_TIMEOUT \
  --memory $GCF_MEMORY \
  --quiet
Enter fullscreen mode Exit fullscreen mode

Here is how it looks like in the Cloud Console:

Cloud Functions 4

🎉 Final tests

The HTTP endpoint lets you trigger the pipeline with a GET request:

GCF_NAME="gcf1_detect_shots_http"
VIDEO_URI="gs://cloud-samples-data/video/visionapi.mp4"
GCF_URL="https://$GCF_REGION-$PROJECT_ID.cloudfunctions.net/$GCF_NAME?video_uri=$VIDEO_URI"

curl $GCF_URL -H "Authorization: bearer $(gcloud auth print-identity-token)"
Enter fullscreen mode Exit fullscreen mode
Launched shot detection for <VIDEO_URI>
Enter fullscreen mode Exit fullscreen mode

Note: The test video <visionapi.mp4> is located in an external bucket but is publicly accessible.

In addition, copy one or several videos into the video bucket. You can drag and drop videos:

Dragging files to a bucket

The videos are then processed in parallel. Here are a few logs:

LEVEL NAME                           EXECUTION_ID ... LOG
...
D     gcf2_generate_summary_animated f6n6tslsfwdu ... Function execution took 49293 ms, finished with status: 'ok'
I     gcf2_generate_summary          yd1vqabafn17 ... Uploading -> b1-videos.../JaneGoodall.mp4.summary035_still.png
I     gcf2_generate_summary_animated qv9b03814jjk ... shot_ratio: 43%
I     gcf2_generate_summary          yd1vqabafn17 ... Uploading -> b1-videos.../JaneGoodall.mp4.summary035_still.webp
D     gcf2_generate_summary          yd1vqabafn17 ... Function execution took 54616 ms, finished with status: 'ok'
I     gcf2_generate_summary_animated g4d2wrzxz2st ... shot_ratio: 71%
...
D     gcf2_generate_summary          amwmov1wk0gn ... Function execution took 65256 ms, finished with status: 'ok'
I     gcf2_generate_summary_animated 7pp882fz0x84 ... shot_ratio: 57%
I     gcf2_generate_summary_animated i3u830hsjz4r ... Uploading -> b1-videos.../JaneGoodall.mp4.summary035_anim.png
I     gcf2_generate_summary_animated i3u830hsjz4r ... Uploading -> b1-videos.../JaneGoodall.mp4.summary035_anim.webp
D     gcf2_generate_summary_animated i3u830hsjz4r ... Function execution took 70862 ms, finished with status: 'ok'
...
Enter fullscreen mode Exit fullscreen mode

In the 3rd bucket, you'll find all still and animated summaries:

Video summary

You've already seen the still summary for <JaneGoodall.mp4> as an introduction to this tutorial. In the animated version, and in only 6 frames, you get an even better idea of what the whole video is about:

Video summary

If you don't want to keep your project, you can delete it:

gcloud projects delete $PROJECT_ID
Enter fullscreen mode Exit fullscreen mode

➕ One more thing

How big is the code base?

first_line_after_licence=16
find $PROJECT_SRC -name '*.py' -exec tail -n +$first_line_after_licence {} \; | grep -v "^$" | wc -l
Enter fullscreen mode Exit fullscreen mode

Number of Python lines:

262
Enter fullscreen mode Exit fullscreen mode
  • Video analysis and processing, with different options, run in less than 300 lines of readable Python.
  • Less lines, less bugs!
  • 🔥🐍 Mission accomplished! 🐍🔥

🖖 See you

I hope you appreciated this tutorial and would love to read your feedback. You can also follow me on Twitter.

⏳ Updates

  • 2021-10-08: Updated with latest library versions + Python 3.7 → 3.9

Top comments (0)