DEV Community

Quinlan Porterfield
Quinlan Porterfield

Posted on

Intestinal microbiome and gluten inside celiac disease.

This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.The anthropoid primates are known for their intense sociality and large brain size. The idea that these might be causally related has given rise to a large body of work testing the 'social brain hypothesis'. Here, the emphasis has been placed on the political demands of social life, and the cognitive skills that would enable animals to track the machinations of other minds in metarepresentational ways. It seems to us that this position risks losing touch with the fact that brains primarily evolved to enable the control of action, which in turn leads us to downplay or neglect the importance of the physical body in a material world full of bodies and other objects. As an alternative, we offer a view of primate brain and social evolution that is grounded in the body and action, rather than minds and metarepresentation. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.It is often said that fear is a universal innate emotion that we humans have inherited from our mammalian ancestors by virtue of having inherited conserved features of their nervous systems. Contrary to this common sense-based scientific point of view, I have argued that what we have inherited from our mammalian ancestors, and they from their distal vertebrate ancestors, and they from their chordate ancestors, and so forth, is not a fear circuit. It is, instead, a defensive survival circuit that detects threats, and in response, initiates defensive survival behaviours and supporting physiological adjustments. Seen in this light, the defensive survival circuits of humans and other mammals can be conceptualized as manifestations of an ancient survival function-the ability to detect danger and respond to it-that may in fact predate animals and their nervous systems, and perhaps may go back to the beginning of life. Fear, on the other hand, from my perspective, is a product of cortical cognitive circuits. This conception is not just of academic interest. It also has practical implications, offering clues as to why efforts to treat problems related to fear and anxiety are not more effective, and what might make them better. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.The primary driver of the evolution of the vertebrate nervous system has been the necessity to move, along with the requirement of controlling the plethora of motor behavioural repertoires seen among the vast and diverse vertebrate species. Understanding the neural basis of motor control through the perspective of evolution, mandates thorough examinations of the nervous systems of species in critical phylogenetic positions. We present here, a broad review of studies on the neural motor infrastructure of the lamprey, a basal and ancient vertebrate, which enjoys a unique phylogenetic position as being an extant representative of the earliest group of vertebrates. From the central pattern generators in the spinal cord to the microcircuits of the pallial cortex, work on the lamprey brain over the years, has provided detailed insights into the basic organization (a bauplan) of the ancestral vertebrate brain, and narrates a compelling account of common ancestry of fundamental aspects of the neural bases for motion control, maintained through half a billion years of vertebrate evolution. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.To make maps from airborne odours requires dynamic respiratory patterns. I propose that this constraint explains the modulation of memory by nasal respiration in mammals, including murine rodents (e.g. laboratory mouse, laboratory rat) and humans. My prior theories of limbic system evolution offer a framework to understand why this occurs. The answer begins with the evolution of nasal respiration in Devonian lobe-finned fishes. This evolutionary innovation led to adaptive radiations in chemosensory systems, including the emergence of the vomeronasal system and a specialization of the main olfactory system for spatial orientation. As mammals continued to radiate into environments hostile to spatial olfaction (air, water), there was a loss of hippocampal structure and function in lineages that evolved sensory modalities adapted to these new environments. Hence the independent evolution of echolocation in bats and toothed whales was accompanied by a loss of hippocampal structure (whales) and an absence of hippocampal theta oscillations during navigation (bats). In conclusion, models of hippocampal function that are divorced from considerations of ecology and evolution fall short of explaining hippocampal diversity across mammals and even hippocampal function in humans. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.The similarities between amphioxus and vertebrate brains, in their regional subdivision, cell types and circuitry, make the former a useful benchmark for understanding the evolutionary innovations that shaped the latter. Locomotory control systems were already well developed in basal chordates, with the ventral neuropile of the dien-mesencephalon serving to set levels of activity and initiate locomotory actions. A chief deficit in amphioxus is the absence of complex vertebrate-type sense organs. Hence, much of vertebrate story is one of progressive improvement both to these and to sensory experience more broadly. This has two aspects (i) anatomical and neurocircuitry innovations in the organs of special sense and the brain centres that process and store their output, and (ii) the emergence of primary consciousness, i.e. sentience. With respect to the latter, a bottom up, evolutionary perspective has a different focus from a top down human-centric one. At issue the obstacles to the emergence of sentience in the first instance, the sequence of addition of new contents to evolving consciousness, and the homology relationship between them. A further question, and a subject for future investigation, is how subjective experience is optimized for each sensory modality. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.This article considers the evolution of brain architectures for predictive processing. We argue that brain mechanisms for predictive perception and action are not late evolutionary additions of advanced creatures like us. Rather, they emerged gradually from simpler predictive loops (e.g. autonomic and motor reflexes) that were a legacy from our earlier evolutionary ancestors-and were key to solving their fundamental problems of adaptive regulation. ML351 We characterize simpler-to-more-complex brains formally, in terms of generative models that include predictive loops of increasing hierarchical breadth and depth. These may start from a simple homeostatic motif and be elaborated during evolution in four main ways these include the multimodal expansion of predictive control into an allostatic loop; its duplication to form multiple sensorimotor loops that expand an animal's behavioural repertoire; and the gradual endowment of generative models with hierarchical depth (to deal with aspects of the world that unfold at different spatial scales) and temporal depth (to select plans in a future-oriented manner). In turn, these elaborations underwrite the solution to biological regulation problems faced by increasingly sophisticated animals. Our proposal aligns neuroscientific theorising-about predictive processing-with evolutionary and comparative data on brain architectures in different animal species. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.Early mammals were small and nocturnal. Their visual systems had regressed and they had poor vision. After the extinction of the dinosaurs 66 mya, some but not all escaped the 'nocturnal bottleneck' by recovering high-acuity vision. By contrast, early primates escaped the bottleneck within the age of dinosaurs by having large forward-facing eyes and acute vision while remaining nocturnal. We propose that these primates differed from other mammals by changing the balance between two sources of visual information to cortex. link2 Thus, cortical processing became less dependent on a relay of information from the superior colliculus (SC) to temporal cortex and more dependent on information distributed from primary visual cortex (V1). In addition, the two major classes of visual information from the retina became highly segregated into magnocellular (M cell) projections from V1 to the primate-specific temporal visual area (MT), and parvocellular-dominated projections to the dorsolateral visual area (DL or V4). link3 The greatly expanded P cell inputs from V1 informed the ventral stream of cortical processing involving temporal and frontal cortex. The M cell pathways from V1 and the SC informed the dorsal stream of cortical processing involving MT, surrounding temporal cortex, and parietal-frontal sensorimotor domains. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.The functional organization of the mammalian brain can be considered to form a layered control architecture, but how this complex system has emerged through evolution and is constructed during development remains a puzzle. Here we consider brain organization through the framework of constraint closure, viewed as a general characteristic of living systems, that they are composed of multiple sub-systems that constrain each other at different timescales. We do so by developing a new formalism for constraint closure, inspired by a previous model showing how within-lifetime dynamics can constrain between-lifetime dynamics, and we demonstrate how this interaction can be generalized to multi-layered systems. Through this model, we consider brain organization in the context of two major examples of constraint closure-physiological regulation and visual orienting. Our analysis draws attention to the capacity of layered brain architectures to scaffold themselves across multiple timescales, including the ability of cortical processes to constrain the evolution of sub-cortical processes, and of the latter to constrain the space in which cortical systems self-organize and refine themselves. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.The nervous system is a product of evolution. That is, it was constructed through a long series of modifications, within the strong constraints of heredity, and continuously subjected to intense selection pressures. As a result, the organization and functions of the brain are shaped by its history. We believe that this fact, underappreciated in contemporary systems neuroscience, offers an invaluable aid for helping us resolve the brain's mysteries. Indeed, we think that the consideration of evolutionary history ought to take its place alongside other intellectual tools used to understand the brain, such as behavioural experiments, studies of anatomical structure and functional characterization based on recordings of neural activity. In this introduction, we argue for the importance of evolution by highlighting specific examples of ways that evolutionary theory can enhance neuroscience. The rest of the theme issue elaborates this point, emphasizing the conservative nature of neural evolution, the important consequences of specific transitions that occurred in our history, and the ways in which considerations of evolution can shed light on issues ranging from specific mechanisms to fundamental principles of brain organization.ML351

Top comments (0)