In the first 2 parts of the series we have looked at the overall module structure of @effect-ts/core
and discussed the general aspects of how modules are organised.
We will now take a deep dive into the specific of the @effect-ts/core/Effect
segment, the primary target for the modules that we will discuss today is node.js
and in general backend development.
While the technologies in question are perfectly usable in the frontend space we believe most of the features are overkill if used on top of pre-existing frameworks like react
and that within the @effect-ts/core
system there are more appropriate data types like Async
& Sync
and in general the ones available in the @effect-ts/core/Classic
segment that better fit the requirements.
In general the advise will be to use Effect
and its derivative in frontend development only if major usage is involved and the bundle-size vs feature-set make sense for you (Effect
and its derivatives tend to add a minimum of 30-80k
), for example we have seen very successful integrations of Stream
with a redux epic-inspired design but we have also seen adding 50k
to the bundle to simply have interruption on a Promise
(that would be something to avoid).
What we will discuss today (and in the next few articles of the series) in most parts is directly usable across all the data types that implements instances of Environmental
thanks to the approach discussed in the previous posts.
The Effect Type
Let's start with the basic and let's take a look at the type definition.
type Effect<R, E, A> = omitted.
the real definition of Effect
is omitted from the purpose of this discussion because the reality is you have no reasons in the world to ever look inside of it.
The logical definition that we can think of is in the lines of:
type Effect<R, E, A> = (r: R) => () => Promise<Either<E, A>>
Basically the Effect
type describes a computation that, in order to run requires an argument of type R
to be provided and when the computation runs
and completes
will produce a result that can either
be a failure of type E
or a success of type A
.
In reality the implementation uses a different internal representation and makes usage of fibers to represent concurrent computations and additionally has an unchecked
exception channel to signal defects of code or unexpected exceptions, the Effect
type uses Cause
to represent the error case of the Exit
and Cause
allows for tracking multiple exit causes with different methods (like parallel/sequential cause of failures, interruptions, etc).
Let's take a look at a basic usage of all the parameters:
import * as T from "@effect-ts/core/Effect"
import { pipe } from "@effect-ts/core/Function"
import { runMain } from "@effect-ts/node/Runtime"
interface Input {
x: number
y: number
}
const division = pipe(
T.environment<Input>(),
T.chain(({ x, y }) => (y === 0 ? T.fail("division by zero") : T.succeed(x / y))),
T.chain((result) =>
T.effectTotal(() => {
console.log(`Final result: ${result}`)
})
)
)
pipe(division, T.provideAll({ x: 1, y: 2 }), runMain)
If we highlight on the type of division:
We can easily read that in order to run this computation we will be required to provide an argument of type Input
and we can expect either an error of type string
or a success of type void
(nothing basically).
In the last line of the snippet we proceed to run the program with:
pipe(division, T.provideAll({ x: 1, y: 2 }), runMain)
If we remove T.provideAll({ x: 1, y: 2 })
we will be alerted with a compiler error that state Input
is not assignable to DefaultEnv
that translates to: "you need to give Input otherwise I have no idea what to run".
If we run the computation with y = 0
we will get:
A checked error was not handled.
"division by zero"
Using runMain
we have automatic reporting of errors in a prettified format
(we will take a look at a larger report later), additionally runMain
returns a function that when called will cancel the running computation.
Snippets Location
All the snippets in this article are available at: https://github.com/Matechs-Garage/effect-ts-bootstrap/tree/master/articles/effect
In the repository you find also a playground environment that bootstrap a postgresql, runs migrations and implements a basic persistence module with detailed integration tests some of which using arbitrary generated models (property-based), we will cover those aspects in future articles.
Variance
Like we discussed in the previous articles of the series variance
is a key component in the design of the modules of @effect-ts/core
in the case of Effect
we discussed 3 type parameters R, E, A
representing one input R
one possible error (output) E
and one possible output A
.
In mostly all of the available combinators E
is treated as co-variant
and R
is treated as contra-variant
, this means that, by default, mixing different Effect
s the result will be an Effect
that requires R1 & R2
and can fail for E1 | E2
.
Let's see it in practice:
import * as T from "@effect-ts/core/Effect"
import { pipe } from "@effect-ts/core/Function"
import { runMain } from "@effect-ts/node/Runtime"
interface InputA {
x: number
}
interface InputB {
y: number
}
interface ErrorA {
_tag: "ErrorA"
value: string
}
interface ErrorB {
_tag: "ErrorB"
value: string
}
// T.Effect<InputA & InputB, ErrorA | ErrorB, void>
const program = pipe(
T.access((_: InputA) => _.x),
T.chain((n) =>
n === 0 ? T.fail<ErrorA>({ _tag: "ErrorA", value: "n === 0" }) : T.succeed(n)
),
T.chain((n) => T.access((_: InputB) => _.y + n)),
T.chain((n) =>
n === 10 ? T.fail<ErrorB>({ _tag: "ErrorB", value: "n === 10" }) : T.succeed(n)
),
T.chain((n) =>
T.effectTotal(() => {
console.log(n)
})
)
)
pipe(program, T.provideAll({ x: 1, y: 1 }), runMain)
Handling Checked Errors
In the previous example we used a tagged union to represent the error type, that choice was purposely made because of typescript's ability to automatically discriminate over the members of such union.
Let's see for example how we could handle the ErrorA
case of the program above:
import * as T from "@effect-ts/core/Effect"
import { pipe } from "@effect-ts/core/Function"
import { runMain } from "@effect-ts/node/Runtime"
interface InputA {
x: number
}
interface InputB {
y: number
}
interface ErrorA {
_tag: "ErrorA"
value: string
}
interface ErrorB {
_tag: "ErrorB"
value: string
}
// T.Effect<InputA & InputB, ErrorA | ErrorB, void>
const program = pipe(
T.access((_: InputA) => _.x),
T.chain((n) =>
n === 0 ? T.fail<ErrorA>({ _tag: "ErrorA", value: "n === 0" }) : T.succeed(n)
),
T.chain((n) => T.access((_: InputB) => _.y + n)),
T.chain((n) =>
n === 10 ? T.fail<ErrorB>({ _tag: "ErrorB", value: "n === 10" }) : T.succeed(n)
),
T.chain((n) =>
T.effectTotal(() => {
console.log(n)
})
)
)
// T.Effect<InputA & InputB, ErrorB, void>
const programAfterErrorHandling = pipe(
program,
T.catchAll((error) => {
switch (error._tag) {
case "ErrorA": {
return T.effectTotal(() => {
console.log(`handling ErrorA: ${error.value}`)
})
}
default:
return T.fail(error)
}
})
)
pipe(programAfterErrorHandling, T.provideAll({ x: 1, y: 1 }), runMain)
If you use this standard for errors and tagged unions in general you can leverage the pattern & matchTag
utilities of @effect-ts/core/Utils
and rewrite the above as:
import * as T from "@effect-ts/core/Effect"
import { pipe } from "@effect-ts/core/Function"
import { matchTag } from "@effect-ts/core/Utils"
import { runMain } from "@effect-ts/node/Runtime"
interface InputA {
x: number
}
interface InputB {
y: number
}
interface ErrorA {
_tag: "ErrorA"
value: string
}
interface ErrorB {
_tag: "ErrorB"
value: string
}
// T.Effect<InputA & InputB, ErrorA | ErrorB, void>
const program = pipe(
T.access((_: InputA) => _.x),
T.chain((n) =>
n === 0 ? T.fail<ErrorA>({ _tag: "ErrorA", value: "n === 0" }) : T.succeed(n)
),
T.chain((n) => T.access((_: InputB) => _.y + n)),
T.chain((n) =>
n === 10 ? T.fail<ErrorB>({ _tag: "ErrorB", value: "n === 10" }) : T.succeed(n)
),
T.chain((n) =>
T.effectTotal(() => {
console.log(n)
})
)
)
// T.Effect<InputA & InputB, ErrorB, void>
const programAfterErrorHandling = pipe(
program,
T.catchAll(
matchTag(
{
ErrorA: ({ value }) =>
T.effectTotal(() => {
console.log(`handling ErrorA: ${value}`)
})
},
T.fail
)
)
)
pipe(programAfterErrorHandling, T.provideAll({ x: 1, y: 1 }), runMain)
Unchecked Exceptions
So far we've seen how to raise checked errors that have specific types and are safely represented for the type-checker to process, there are cases where instead we want to raise some stronger form of error, for example to handle cases like a code defect or cases where unknown system errors have been observed, to do so Effect
provides a dedicated Error
channel.
Note that raising on this channel will skip any checked error management process like the above T.catchAll
.
Let's make an example:
import * as T from "@effect-ts/core/Effect"
import { pipe } from "@effect-ts/core/Function"
import { matchTag } from "@effect-ts/core/Utils"
import { runMain } from "@effect-ts/node/Runtime"
interface InputA {
x: number
}
interface InputB {
y: number
}
interface ErrorA {
_tag: "ErrorA"
value: string
}
// T.Effect<InputA & InputB, ErrorA, void>
const program = pipe(
T.access((_: InputA) => _.x),
T.chain((n) =>
n === 0 ? T.fail<ErrorA>({ _tag: "ErrorA", value: "n === 0" }) : T.succeed(n)
),
T.chain((n) => T.access((_: InputB) => _.y + n)),
T.chain((n) => (n === 10 ? T.die("something very wrong happened") : T.succeed(n))),
T.chain((n) =>
T.effectTotal(() => {
console.log(n)
})
)
)
// T.Effect<InputA & InputB, never, void>
const programAfterErrorHandling = pipe(
program,
T.catchAll(
matchTag(
{
ErrorA: ({ value }) =>
T.effectTotal(() => {
console.log(`handling ErrorA: ${value}`)
})
},
(e) =>
pipe(
T.effectTotal(() => {
console.log(`Default Handler`)
}),
T.andThen(T.fail(e))
)
)
)
)
pipe(programAfterErrorHandling, T.provideAll({ x: 1, y: 9 }), runMain)
By running the code above we will get:
yarn ts-node articles/effect/04.ts
yarn run v1.22.4
$ /home/ma/os/articles/node_modules/.bin/ts-node articles/effect/04.ts
An unchecked error was produced.
"something very wrong happened"
error Command failed with exit code 2.
We can notice none of the error handling logic have been accounted for, in fact neither console.log
cases of the T.catchAll
logic have been produced.
Handling full Cause
In order to take control over the full exit cause of a program it is necessary to access lower level combinators like foldCause
or a combination of sandbox/catchAll
.
Let's take a look at a possibility:
import * as A from "@effect-ts/core/Classic/Array"
import * as T from "@effect-ts/core/Effect"
import * as Cause from "@effect-ts/core/Effect/Cause"
import { pipe } from "@effect-ts/core/Function"
import { matchTag } from "@effect-ts/core/Utils"
import { runMain } from "@effect-ts/node/Runtime"
interface InputA {
x: number
}
interface InputB {
y: number
}
interface ErrorA {
_tag: "ErrorA"
value: string
}
// T.Effect<InputA & InputB, ErrorA, void>
const program = pipe(
T.access((_: InputA) => _.x),
T.chain((n) =>
n === 0 ? T.fail<ErrorA>({ _tag: "ErrorA", value: "n === 0" }) : T.succeed(n)
),
T.chain((n) => T.access((_: InputB) => _.y + n)),
T.chain((n) => (n === 10 ? T.die("something very wrong happened") : T.succeed(n))),
T.chain((n) =>
T.effectTotal(() => {
console.log(n)
})
)
)
// T.Effect<InputA & InputB, never, void>
const programAfterErrorHandling = pipe(
program,
T.catchAll(
matchTag(
{
ErrorA: ({ value }) =>
T.effectTotal(() => {
console.log(`handling ErrorA: ${value}`)
})
},
(e) =>
pipe(
T.effectTotal(() => {
console.log(`Default Handler`)
}),
T.andThen(T.fail(e))
)
)
)
)
const handleFullCause = pipe(
programAfterErrorHandling,
T.sandbox,
T.catchAll((cause) => {
const defects = Cause.defects(cause)
if (A.isNonEmpty(defects)) {
return T.effectTotal(() => {
console.log("Handle:", ...defects)
})
}
return T.halt(cause)
})
)
pipe(handleFullCause, T.provideAll({ x: 1, y: 9 }), runMain)
With the combinator Cause.defects
we can extract a list of defects that might be present on the cause, there are many more combinators you can use to encode the many possible scenarios you might need to handle.
The type definition Cause
is as follows:
export type Cause<E> = Empty | Fail<E> | Die | Interrupt | Then<E> | Both<E>
// empty cause, no cause at all, used for monoidal composition
export interface Empty {
readonly _tag: "Empty"
}
// represent a checked error
export interface Fail<E> {
readonly _tag: "Fail"
readonly value: E
}
// represent an unchecked error
export interface Die {
readonly _tag: "Die"
readonly value: unknown
}
// represent an interruption triggered by fiber with id FiberID
export interface Interrupt {
readonly _tag: "Interrupt"
readonly fiberId: FiberID
}
// represent two causes that happened in sequence
export interface Then<E> {
readonly _tag: "Then"
readonly left: Cause<E>
readonly right: Cause<E>
}
// represent two causes that happened in parallel
export interface Both<E> {
readonly _tag: "Both"
readonly left: Cause<E>
readonly right: Cause<E>
}
Let's take a look at a more complex code where we might trigger multiple failures and let's take a look at how it gets reported:
import * as T from "@effect-ts/core/Effect"
import * as Rand from "@effect-ts/core/Effect/Random"
import { pipe } from "@effect-ts/core/Function"
import { runMain } from "@effect-ts/node/Runtime"
export class ProcessError {
readonly _tag = "ProcessError"
constructor(readonly message: string) {}
}
// this effect sleeps for a random period between 100ms and 1000ms and randomly suceed or fail
export const randomFailure = (n: number) =>
pipe(
Rand.nextIntBetween(100, 1000),
T.chain((delay) =>
pipe(
Rand.nextBoolean,
T.chain((b) => (b ? T.unit : T.fail(new ProcessError(`failed at: ${n}`)))),
T.delay(delay)
)
)
)
// build up a n-tuple of computations
export const program = T.tuplePar(
randomFailure(0),
randomFailure(1),
randomFailure(2),
randomFailure(3),
randomFailure(4),
randomFailure(5)
)
// runs the program
pipe(program, runMain)
Running this various times will produce different outputs given the random nature of the program but an average result will look like:
$ /home/ma/os/articles/node_modules/.bin/ts-node articles/effect/06.ts
โฅ
โ โโโฆโโโฆโโโฆโโโฆโโโ
โ โ โ โ โ โ
โ โ โ โ โ โ โAn interrupt was produced by #6.
โ โ โ โ โ โผ
โ โ โ โ โ
โ โ โ โ โ โAn interrupt was produced by #5.
โ โ โ โ โผ
โ โ โ โ
โ โ โ โ โAn interrupt was produced by #4.
โ โ โ โผ
โ โ โ
โ โ โ โAn interrupt was produced by #1.
โ โ โผ
โ โ
โ โ โA checked error was not handled.
โ โ {
โ โ "message": "failed at: 1",
โ โ "_tag": "ProcessError"
โ โ }
โ โผ
โผ
error Command failed with exit code 2.
We can see that at the first failure the tuplePar
combinator takes care of interrupting the other running computations and we can see by the horizontal nature of the report that there were running 6 fibers in total.
Let's take a look at how error handling applies in this scenarios:
import * as T from "@effect-ts/core/Effect"
import * as Rand from "@effect-ts/core/Effect/Random"
import { pipe } from "@effect-ts/core/Function"
import { runMain } from "@effect-ts/node/Runtime"
export class ProcessError {
readonly _tag = "ProcessError"
constructor(readonly message: string) {}
}
// this effect sleeps for a random period between 100ms and 1000ms and randomly suceed or fail
export const randomFailure = (n: number) =>
pipe(
Rand.nextIntBetween(100, 1000),
T.chain((delay) =>
pipe(
Rand.nextBoolean,
T.chain((b) => (b ? T.unit : T.fail(new ProcessError(`failed at: ${n}`)))),
T.delay(delay)
)
)
)
// build up a n-tuple of computations
export const program = T.tuplePar(
randomFailure(0),
randomFailure(1),
randomFailure(2),
randomFailure(3),
randomFailure(4),
randomFailure(5)
)
// runs the program
pipe(
program,
T.catchAll((_) =>
T.effectTotal(() => {
console.log(`Process error: ${_.message}`)
})
),
runMain
)
This will now emit something like:
$ /home/ma/os/articles/node_modules/.bin/ts-node articles/effect/07.ts
Process error: failed at: 2
Done in 2.12s.
We can see that catchAll
peaks at the first available checked
error in the cause
tree and handles that.
In order to handle multiple causes of failures we can, as outlined before, jump in a sandbox and traverse the cause
with available combinators like collect
and similar.
Environment
We have covered up to now the usage of E
and A
, let's now take a deep look at how R
works.
The crucial idea we will discuss here is I believe the single 10x improvement ZIO had to offer to the scala ecosystem and it applies perfectly (even more compared to scala) to the structural variance of typescript.
The main idea is to embed dynamic services that contains business logic as part of the environment having as a consequence a type-level representation of what modules a specific computation needs in order to run, for example in previous snippets we have interacted directly with console.log
, that code will easily become non testable without weird tricks like monkey-patching modules.
Let's start with the basic:
import * as T from "@effect-ts/core/Effect"
import { pipe } from "@effect-ts/core/Function"
import { runMain } from "@effect-ts/node/Runtime"
// define a module
export interface ConsoleModule {
log: (message: string) => T.UIO<void>
}
// access the module from environment
export function log(message: string) {
return T.accessM((_: ConsoleModule) => _.log(message))
}
// T.Effect<ConsoleModule, never, void>
export const program = pipe(
log("hello"),
T.andThen(log("world")),
T.andThen(log("hello")),
T.andThen(log("eatrh"))
)
// Run the program providing a concrete implementation
pipe(
program,
T.provide<ConsoleModule>({
log: (message) =>
T.effectTotal(() => {
console.log(message)
})
}),
runMain
)
When executed this program will output:
$ /home/ma/os/articles/node_modules/.bin/ts-node articles/effect/08.ts
hello
world
hello
eatrh
Done in 1.68s.
We can now provide a different implementation that we might use to test the correct implementation of program without output to console, for example:
import * as T from "@effect-ts/core/Effect"
import * as R from "@effect-ts/core/Effect/Ref"
import { pipe } from "@effect-ts/core/Function"
import { runMain } from "@effect-ts/node/Runtime"
// define a module
export interface ConsoleModule {
log: (message: string) => T.UIO<void>
}
// access the module from environment
export function log(message: string) {
return T.accessM((_: ConsoleModule) => _.log(message))
}
// T.Effect<ConsoleModule, never, void>
export const program = pipe(
log("hello"),
T.andThen(log("world")),
T.andThen(log("hello")),
T.andThen(log("eatrh"))
)
// Run the program providing a concrete implementation
pipe(
T.do,
T.bind("ref", () => R.makeRef(<string[]>[])),
T.bind("prog", ({ ref }) =>
pipe(
program,
T.provide<ConsoleModule>({
log: (message) =>
pipe(
ref,
R.update((messages) => [...messages, message])
)
})
)
),
T.chain(({ ref }) => ref.get),
T.tap((messages) =>
messages.length === 4 ? T.succeed(messages) : T.fail("wrong number of messages")
),
runMain
)
In this way we can run the program without ever interacting with the actual console
.
Has & Tag
It's all nice but at some point we will encounter strange situations, the intersection of 2 types is not generally commutative and can lead to very strange behaviours.
One example would be having 2 services implement the log
function with different signatures, those will be collapsed to never
when ServiceA & ServiceB
are present, additionally inference cannot always discern those members from the mangled result, we need to remember, at the end, that the typescript type-system is structural.
Here comes Has
and Tag
to solve the issue, Tag<T>
represent an object that has the ability to read and write from and to and environment of type Has<T>
, Has
is designed to be safe for intersection.
Let's rewrite the above using Has
and Tag
:
import { tag } from "@effect-ts/core/Classic/Has"
import * as T from "@effect-ts/core/Effect"
import { pipe } from "@effect-ts/core/Function"
import { runMain } from "@effect-ts/node/Runtime"
// define a module
export interface ConsoleModule {
log: (message: string) => T.UIO<void>
}
// define a tag for the service
export const ConsoleModule = tag<ConsoleModule>()
// access the module from environment
export function log(message: string) {
return T.accessServiceM(ConsoleModule)((_) => _.log(message))
}
// T.Effect<Has<ConsoleModule>, never, void>
export const program = pipe(
log("hello"),
T.andThen(log("world")),
T.andThen(log("hello")),
T.andThen(log("eatrh"))
)
// Run the program providing a concrete implementation
pipe(
program,
T.provideService(ConsoleModule)({
log: (message) =>
T.effectTotal(() => {
console.log(message)
})
}),
runMain
)
There are many combinators to work with services (provide, access, replace, etc).
Services are also highly used in structuring modular environments constructed dynamically using Layer
but that discussion is for another post of the series, after having seen the Managed
data type first.
We can already improve the code a little by deriving the implementation of log
, to do so we can look at deriveLifted
:
import { tag } from "@effect-ts/core/Classic/Has"
import * as T from "@effect-ts/core/Effect"
import { pipe } from "@effect-ts/core/Function"
import { runMain } from "@effect-ts/node/Runtime"
// define a module
export interface ConsoleModule {
log: (message: string) => T.UIO<void>
}
// define a tag for the service
export const ConsoleModule = tag<ConsoleModule>()
// access the module from environment
export const { log } = T.deriveLifted(ConsoleModule)(["log"], [], [])
// T.Effect<Has<ConsoleModule>, never, void>
export const program = pipe(
log("hello"),
T.andThen(log("world")),
T.andThen(log("hello")),
T.andThen(log("eatrh"))
)
// Run the program providing a concrete implementation
pipe(
program,
T.provideService(ConsoleModule)({
log: (message) =>
T.effectTotal(() => {
console.log(message)
})
}),
runMain
)
The 3 array parameters of deriveLifted
represent the field names of the functions to derive and they represent in sequence:
- non generic, effect-returning functions
- constant effects
- constant values
Usage:
import { tag } from "@effect-ts/core/Classic/Has"
import * as T from "@effect-ts/core/Effect"
import { pipe } from "@effect-ts/core/Function"
import { runMain } from "@effect-ts/node/Runtime"
// define a module
export interface ConsoleModule {
prefix: T.UIO<string>
end: string
log: (message: string) => T.UIO<void>
}
// define a tag for the service
export const ConsoleModule = tag<ConsoleModule>()
// access the module from environment
export const { end, log, prefix } = T.deriveLifted(ConsoleModule)(
["log"],
["prefix"],
["end"]
)
// T.Effect<Has<ConsoleModule>, never, void>
export const program = pipe(
prefix,
T.chain(log),
T.andThen(log("world")),
T.andThen(log("hello")),
T.andThen(pipe(end, T.chain(log)))
)
// Run the program providing a concrete implementation
pipe(
program,
T.provideService(ConsoleModule)({
log: (message) =>
T.effectTotal(() => {
console.log(message)
}),
prefix: T.succeed("hello"),
end: "earth"
}),
runMain
)
Additional combinators like deriveAccess
and deriveAccessM
can be used to derive access-like function signatures like:
import { tag } from "@effect-ts/core/Classic/Has"
import * as T from "@effect-ts/core/Effect"
import { pipe } from "@effect-ts/core/Function"
import { runMain } from "@effect-ts/node/Runtime"
// define a module
export interface ConsoleModule {
prefix: string
end: string
log: (message: string) => T.UIO<void>
}
// define a tag for the service
export const ConsoleModule = tag<ConsoleModule>()
// access the module from environment
export const { log } = T.deriveLifted(ConsoleModule)(["log"], [], [])
export const { end: accessEndM, prefix: accessPrefixM } = T.deriveAccessM(
ConsoleModule
)(["end", "prefix"])
// T.Effect<Has<ConsoleModule>, never, void>
export const program = pipe(
accessPrefixM(log),
T.andThen(log("world")),
T.andThen(log("hello")),
T.andThen(accessEndM(log))
)
// Run the program providing a concrete implementation
pipe(
program,
T.provideService(ConsoleModule)({
log: (message) =>
T.effectTotal(() => {
console.log(message)
}),
prefix: "hello",
end: "earth"
}),
runMain
)
Stay tuned
The next week's article of the series will be about the Managed
data-type to encode Resources
that can be safely acquired and released.
Top comments (0)