DEV Community

Cover image for ๐Ÿš€ Building an AI-Powered Call Intelligence System: A Developer's Epic Journey
Biswajit Patra
Biswajit Patra

Posted on

๐Ÿš€ Building an AI-Powered Call Intelligence System: A Developer's Epic Journey

Welcome aboard, brave code warriors! Today, we're embarking on an epic quest to build, test, and evolve a call intelligence system that turns boring audio files into goldmines of insights. Grab your favourite caffeinated beverage, fire up Google Colab, and let's dive into this adventure!

๐Ÿ“š Table of Contents

  1. The Quest Begins: Basic Setup
  2. Building Our Magic Powers
  3. Testing Our Creation
  4. Leveling Up: Advanced Features
  5. Battle-Testing in Production

๐Ÿฐ The Quest Begins: Basic Setup

First, let's gather our magical ingredients:

!pip install openai  # Your trusty spell book
Enter fullscreen mode Exit fullscreen mode

๐Ÿ” Securing Your Magic Keys

def setup_api_key():
    """Your secret API key vault ๐Ÿ”"""
    api_key = input("Enter your OpenAI API key (we promise to keep it safe!): ")
    os.environ['OPENAI_API_KEY'] = api_key
    return "API key secured! ๐ŸŽ‰"

settings = setup_api_key()
Enter fullscreen mode Exit fullscreen mode

๐Ÿง™โ€โ™‚๏ธ Building Our Magic Powers

๐ŸŽ™๏ธ The Speech Whisperer

class AudioWizard:
    """๐ŸŽ™๏ธ Turning speech into text since 2024"""

    def __init__(self, api_key):
        self.client = OpenAI(api_key=api_key)
        print("AudioWizard initialized and ready for action! ๐Ÿš€")

    @retry(tries=3, delay=2)  # Magic shield against API hiccups
    async def transcribe_audio(self, audio_file_path):
        try:
            print("๐ŸŽง Listening to your audio...")
            with open(audio_file_path, "rb") as audio_file:
                transcription = await self.client.audio.transcriptions.create(
                    model="whisper-1",
                    file=audio_file,
                    response_format="verbose_json"
                )
            print("โœจ Translation complete!")
            return {
                "success": True,
                "text": transcription.text,
                "confidence": transcription.confidence
            }
        except Exception as e:
            print(f"๐Ÿšจ Oh no! A wild error appeared: {str(e)}")
            return {"success": False, "error": str(e)}
Enter fullscreen mode Exit fullscreen mode

๐ŸŽญ The Script Enchanter

class ScriptEnchanter:
    """๐ŸŽฌ Making your transcripts ready for Broadway"""

    def __init__(self, api_key):
        self.client = OpenAI(api_key=api_key)

    async def format_script(self, text):
        try:
            response = await self.client.chat.completions.create(
                model="gpt-4",
                messages=[
                    {"role": "system", "content": """
                    ๐ŸŽญ You are a master screenplay formatter who:
                    - Names speakers like a casting director
                    - Adds emotions and actions in (parentheses)
                    - Makes conversations flow like poetry
                    """},
                    {"role": "user", "content": f"Transform this into a masterpiece:\n\n{text}"}
                ],
                temperature=0.3
            )
            return response.choices[0].message.content
        except Exception as e:
            return f"๐ŸŽญ Stage fright! Error: {str(e)}"
Enter fullscreen mode Exit fullscreen mode

๐Ÿงช Testing Our Creation

๐ŸŽฏ The Test Master

@dataclass
class TestResults:
    """๐Ÿ“Š Keeping score of our system's performance"""
    accuracy: float
    wer: float  # Word Error Rate
    processing_time: float
    confidence_score: float

class TestMaster:
    """๐Ÿงช Making sure our magic actually works"""

    def __init__(self):
        self.test_cases = [
            {
                "name": "Clear Speech Test",
                "file": "test_files/clear_speech.wav",
                "expected": "test_files/clear_speech.txt",
                "difficulty": "easy"
            },
            {
                "name": "Noisy Battle Test",
                "file": "test_files/noisy.wav",
                "expected": "test_files/noisy.txt",
                "difficulty": "hard"
            }
        ]
        self.results = {}

    async def run_tests(self):
        """๐ŸŽฏ Running our test gauntlet"""
        for test in self.test_cases:
            print(f"๐Ÿƒโ€โ™‚๏ธ Running {test['name']}...")

            # Time the spell casting
            start_time = time.time()

            # Cast our transcription spell
            result = await AudioWizard().transcribe_audio(test['file'])

            # Calculate our accuracy scores
            metrics = self.calculate_metrics(
                result['text'],
                self.load_expected_text(test['expected']),
                time.time() - start_time
            )

            self.results[test['name']] = metrics

            print(f"โœ… Test completed with {metrics.accuracy:.1f}% accuracy!")

    def calculate_metrics(self, result, expected, time_taken):
        """๐Ÿ“ Measuring our magical accuracy"""
        return TestResults(
            accuracy=self.calculate_accuracy(result, expected),
            wer=self.calculate_wer(result, expected),
            processing_time=time_taken,
            confidence_score=self.calculate_confidence(result)
        )
Enter fullscreen mode Exit fullscreen mode

๐Ÿ“Š The Results Visualizer

class ResultsVisualizer:
    """๐Ÿ“ˆ Making our test results look magical"""

    def visualize_results(self, results: Dict[str, TestResults]):
        """Create a fancy visualization of our test results"""
        plt.figure(figsize=(12, 6))

        # Plot accuracy scores
        tests = list(results.keys())
        accuracies = [r.accuracy for r in results.values()]

        plt.bar(tests, accuracies, color='skyblue')
        plt.title("๐ŸŽฏ Accuracy Scores", fontsize=15)
        plt.ylabel("Accuracy (%)")

        # Add some sparkle โœจ
        for i, v in enumerate(accuracies):
            plt.text(i, v + 1, f"{v:.1f}%", 
                    ha='center', fontsize=12)

        plt.show()
Enter fullscreen mode Exit fullscreen mode

๐Ÿ†™ Leveling Up: Advanced Features

๐ŸŒŸ The Feature Expander

class FeatureExpander:
    """๐ŸŒŸ Adding new magical powers"""

    async def add_speaker_diarization(self, audio):
        """๐Ÿ‘ฅ Identifying different speakers"""
        try:
            # Your speaker diarization code here
            print("๐ŸŽญ Identifying speakers...")
        except Exception as e:
            print(f"๐Ÿšจ Speaker identification failed: {str(e)}")

    async def add_sentiment_analysis(self, text):
        """๐Ÿ˜Š Understanding emotional tones"""
        try:
            response = await self.client.chat.completions.create(
                model="gpt-4",
                messages=[
                    {"role": "system", "content": 
                     "Analyze the emotional tone of this conversation"},
                    {"role": "user", "content": text}
                ]
            )
            return response.choices[0].message.content
        except Exception as e:
            return f"๐Ÿ˜• Emotion detection failed: {str(e)}"
Enter fullscreen mode Exit fullscreen mode

๐Ÿงช Testing New Features

class FeatureTester:
    """๐Ÿงช Testing our new magical powers"""

    async def test_new_feature(self, feature_name: str, test_data: Dict):
        print(f"๐Ÿงช Testing {feature_name}...")

        start_time = time.time()
        try:
            # Run the feature
            result = await self.run_feature(feature_name, test_data)

            # Validate the results
            validation = self.validate_feature(feature_name, result)

            # Calculate metrics
            metrics = {
                "success": validation["success"],
                "processing_time": time.time() - start_time,
                "accuracy": validation["accuracy"]
            }

            return {
                "status": "โœ… Test passed!" if validation["success"] 
                         else "โŒ Test failed!",
                "metrics": metrics
            }

        except Exception as e:
            return {
                "status": "๐Ÿ’ฅ Test crashed!",
                "error": str(e)
            }
Enter fullscreen mode Exit fullscreen mode

โš”๏ธ Battle-Testing in Production

๐Ÿ† Performance Testing

class PerformanceTester:
    """โšก Making sure our system is speed-champion"""

    async def run_performance_test(self, test_duration: int = 3600):
        """๐Ÿƒโ€โ™‚๏ธ Running performance marathon"""
        print("๐Ÿ Starting performance test...")

        metrics = {
            "processed_files": 0,
            "average_processing_time": 0,
            "error_rate": 0,
            "memory_usage": []
        }

        start_time = time.time()
        while time.time() - start_time < test_duration:
            # Process test file
            result = await self.process_test_file()

            # Update metrics
            metrics["processed_files"] += 1
            metrics["average_processing_time"] = (
                (metrics["average_processing_time"] * 
                 (metrics["processed_files"] - 1) + 
                 result["processing_time"]) / 
                metrics["processed_files"]
            )

            # Monitor memory
            metrics["memory_usage"].append(
                psutil.Process().memory_info().rss / 1024 / 1024
            )

        return metrics
Enter fullscreen mode Exit fullscreen mode

๐Ÿ“ˆ Results Dashboard

class ResultsDashboard:
    """๐Ÿ“Š Creating our magical mission control center"""

    def create_dashboard(self, metrics: Dict):
        """๐Ÿ“Š Building a fancy dashboard"""
        fig = plt.figure(figsize=(15, 10))

        # Processing time graph
        plt.subplot(2, 2, 1)
        plt.plot(metrics["processing_times"])
        plt.title("โšก Processing Speed")

        # Accuracy graph
        plt.subplot(2, 2, 2)
        plt.bar(["WER", "Accuracy"], 
               [metrics["wer"], metrics["accuracy"]])
        plt.title("๐ŸŽฏ Accuracy Metrics")

        # Memory usage
        plt.subplot(2, 2, 3)
        plt.plot(metrics["memory_usage"])
        plt.title("๐Ÿ’พ Memory Usage")

        # Error rates
        plt.subplot(2, 2, 4)
        plt.pie([metrics["success_rate"], 
                100 - metrics["success_rate"]], 
               labels=["Success", "Errors"])
        plt.title("โœ… Success Rate")

        plt.tight_layout()
        plt.show()
Enter fullscreen mode Exit fullscreen mode

๐ŸŽฎ Putting It All Together

async def run_complete_system():
    """๐ŸŽฎ Running our complete magical system"""

    # Initialize our system
    print("๐Ÿง™โ€โ™‚๏ธ Initializing magical systems...")
    audio_wizard = AudioWizard(os.getenv('OPENAI_API_KEY'))
    test_master = TestMaster()
    feature_expander = FeatureExpander()

    # Run core functionality tests
    print("\n๐Ÿงช Testing core magic...")
    await test_master.run_tests()

    # Test new features
    print("\n๐ŸŒŸ Testing new powers...")
    feature_results = await FeatureTester().test_new_feature(
        "sentiment_analysis",
        {"text": "Sample conversation"}
    )

    # Run performance tests
    print("\nโšก Running speed tests...")
    performance_metrics = await PerformanceTester().run_performance_test(
        test_duration=300  # 5 minutes test
    )

    # Create dashboard
    print("\n๐Ÿ“Š Creating magical dashboard...")
    ResultsDashboard().create_dashboard({
        **test_master.results,
        **performance_metrics
    })

    print("\nโœจ All tests completed! โœจ")

# Run everything!
await run_complete_system()
Enter fullscreen mode Exit fullscreen mode

๐ŸŽ“ Pro Tips for the Advanced Wizard

  1. ๐Ÿ”ง Optimization Spells
   # Pre-process audio for better results
   audio = (AudioProcessor(file)
           .reduce_noise()
           .normalize_volume()
           .export())
Enter fullscreen mode Exit fullscreen mode
  1. ๐Ÿ›ก๏ธ Error Handling Shield
   # Protect against API timeouts
   @retry(tries=3, delay=2, backoff=2)
   async def protected_api_call():
       # Your API calls here
       pass
Enter fullscreen mode Exit fullscreen mode
  1. โšก Speed Enchantments
   # Batch processing for multiple files
   async def process_batch(files):
       return await asyncio.gather(
           *[process_file(f) for f in files]
       )
Enter fullscreen mode Exit fullscreen mode

๐ŸŽฏ Future Quests

Ready to take your system to the next level? Here are some epic quests to pursue:

  1. ๐ŸŒˆ Multilingual Magic

    • Add support for multiple languages
    • Implement cross-language translation
    • Add cultural context awareness
  2. ๐ŸŽญ Advanced Character Recognition

    • Improve speaker diarization
    • Add emotion detection
    • Implement personality insights
  3. โšก Performance Boosters

    • Implement caching
    • Add distributed processing
    • Optimize memory usage

๐Ÿ† Victory Lap

Congratulations, brave developer! You've built a powerful call intelligence system, complete with:

  • ๐ŸŽฏ Robust testing
  • ๐Ÿ“Š Performance monitoring
  • ๐ŸŒŸ Advanced features
  • ๐Ÿ›ก๏ธ Error handling

Remember: The best code is like magic - it works reliably, but there's always room for more enchantments!

Now go forth and build amazing things! ๐Ÿš€โœจ


P.S. If you find any bugs, they're not bugs - they're just unexpected features taking a vacation! ๐Ÿ˜‰

Top comments (1)

Collapse
 
ngtduc693 profile image
Duc Nguyen Thanh

saved, thanks