As a developer in the AI space, understanding the architecture of generative AI platforms is crucial. These systems are at the forefront of modern AI applications, capable of producing human-like text, images, and more. In this article, we'll explore the technical aspects of building such a platform, focusing on the key components and their implementation.
#Architecture Overview
A generative AI platform typically consists of several interconnected components:
Orchestration Layer
Context Construction Module
Input/Output Guardrails
Model Gateway
Caching System
Action Handlers (Read-only and Write)
Database Layer
Observability Stack
Let's dive into each of these components and discuss their technical implementation.
#1. Orchestration Layer
The orchestration layer is the brain of the operation. It's typically implemented as a distributed system using technologies like Apache Airflow or Kubernetes.
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
def process_query(query):
# Implement query processing logic
pass
def generate_response(context):
# Implement response generation logic
pass
with DAG('ai_platform_workflow', default_args=default_args, schedule_interval=None) as dag:
process_task = PythonOperator(
task_id='process_query',
python_callable=process_query,
op_kwargs={'query': '{{ dag_run.conf["query"] }}'}
)
generate_task = PythonOperator(
task_id='generate_response',
python_callable=generate_response,
op_kwargs={'context': '{{ ti.xcom_pull(task_ids="process_query") }}'}
)
process_task >> generate_task
This DAG defines a simple workflow for processing a query and generating a response.
#2. Context Construction Module
The context construction module often uses techniques like RAG (Retrieval-Augmented Generation) and query rewriting. Here's a simplified implementation using the langchain library:
from langchain import PromptTemplate, LLMChain
from langchain.llms import OpenAI
from langchain.retrievers import ElasticSearchBM25Retriever
# Initialize retriever
retriever = ElasticSearchBM25Retriever(es_url="http://localhost:9200", index_name="documents")
# Define prompt template
template = """
Context: {context}
Query: {query}
Generate a response based on the above context and query.
"""
prompt = PromptTemplate(template=template, input_variables=["context", "query"])
# Initialize LLM
llm = OpenAI()
llm_chain = LLMChain(prompt=prompt, llm=llm)
def enhance_context(query):
relevant_docs = retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in relevant_docs])
return llm_chain.run(context=context, query=query)
This code snippet demonstrates how to use RAG to enhance the context of a query before passing it to the language model.
#3. Input/Output Guardrails
Implementing guardrails involves creating filters for both input and output. Here's a basic example:
import re
def input_filter(query):
# Remove potential SQL injection attempts
query = re.sub(r'\b(UNION|SELECT|FROM|WHERE)\b', '', query, flags=re.IGNORECASE)
# Remove any non-alphanumeric characters except spaces
query = re.sub(r'[^\w\s]', '', query)
return query
def output_filter(response):
# Remove any potential harmful content
harmful_words = ['exploit', 'hack', 'steal']
for word in harmful_words:
response = re.sub(r'\b' + word + r'\b', '[REDACTED]', response, flags=re.IGNORECASE)
return response
These functions provide basic filtering for input queries and output responses.
#4. Model Gateway
The model gateway manages access to different AI models. Here's a simple implementation:
class ModelGateway:
def __init__(self):
self.models = {}
self.token_usage = {}
def register_model(self, model_name, model_instance):
self.models[model_name] = model_instance
self.token_usage[model_name] = 0
def get_model(self, model_name):
return self.models.get(model_name)
def generate(self, model_name, prompt):
model = self.get_model(model_name)
if not model:
raise ValueError(f"Model {model_name} not found")
response = model.generate(prompt)
self.token_usage[model_name] += len(prompt.split())
return response
gateway = ModelGateway()
gateway.register_model("gpt-3", OpenAIModel())
gateway.register_model("t5", T5Model())
This gateway allows for registering multiple models and keeps track of token usage.
#5. Caching System
Implementing a caching system can significantly improve performance. Here's a basic semantic cache:
import faiss
import numpy as np
class SemanticCache:
def __init__(self, dimension):
self.index = faiss.IndexFlatL2(dimension)
self.responses = []
def add(self, query_vector, response):
self.index.add(np.array([query_vector]))
self.responses.append(response)
def search(self, query_vector, threshold):
D, I = self.index.search(np.array([query_vector]), 1)
if D[0][0] < threshold:
return self.responses[I[0][0]]
return None
cache = SemanticCache(768) # Assuming 768-dimensional BERT embeddings
This cache uses FAISS for efficient similarity search of query embeddings.
#6. Action Handlers
Action handlers implement the business logic for various operations:
```class ReadOnlyActions:
@staticmethod
def vector_search(query, index):
# Implement vector search logic
pass
@staticmethod
def sql_query(query, database):
# Implement SQL query logic
pass
class WriteActions:
@staticmethod
def update_database(data, database):
# Implement database update logic
pass
@staticmethod
def send_email(recipient, content):
# Implement email sending logic
pass
These classes provide a framework for implementing various actions that the AI platform might need to perform.
**#7. Database Layer**
The database layer typically involves multiple types of databases:
from pymongo import MongoClient
from elasticsearch import Elasticsearch
Document store
mongo_client = MongoClient('mongodb://localhost:27017/')
doc_store = mongo_client['ai_platform']['documents']
Vector database
es_client = Elasticsearch([{'host': 'localhost', 'port': 9200}])
vector_index = 'embeddings'
Relational database
import sqlite3
conn = sqlite3.connect('platform.db')
This setup includes MongoDB for document storage, Elasticsearch for vector search, and SQLite for relational data.
**#8. Observability Stack**
Implementing proper observability is crucial for maintaining and improving the platform:
```import logging
from prometheus_client import Counter, Histogram
# Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Metrics
request_counter = Counter('ai_platform_requests_total', 'Total number of requests')
latency_histogram = Histogram('ai_platform_request_latency_seconds', 'Request latency in seconds')
# Example usage
@latency_histogram.time()
def process_request(request):
request_counter.inc()
logger.info(f"Processing request: {request}")
# Process the request
pass
This setup includes basic logging and Prometheus metrics for monitoring request counts and latencies.
#Conclusion
Building a generative AI platform is a complex task that requires careful integration of multiple components. Each part of the system plays a crucial role in delivering accurate, efficient, and safe AI-generated content. As you develop your own AI platform, remember that this architecture is just a starting point. You'll need to adapt and expand it based on your specific requirements and use cases.
The field of AI is rapidly evolving, and staying up-to-date with the latest advancements is crucial. Keep experimenting, learning, and pushing the boundaries of what's possible with generative AI!
Top comments (2)
I have 2trust you on this...
!pip install apache-airflow and then your code
SO EXCITED!
Thank you for sharing this code. It is running!
👍