DEV Community

Prashant Mishra
Prashant Mishra

Posted on

Heap(Priority Queue)

Find kth largest element in the array

TC:O(NlogN) as heap sort will take nlogn time to build heap

class Solution {
    public int findKthLargest(int[] nums, int k) {
        PriorityQueue<Integer> q = new PriorityQueue<>();
        for(int i : nums){
            q.add(i);
            while(!q.isEmpty() && q.size() > k){
                q.remove();
            }
        }
        return q.peek();
    }
}
Enter fullscreen mode Exit fullscreen mode

K max sum combination

TC: O(N^2), for using two for loops

import java.util.*;
public class Solution{
    public static ArrayList<Integer> kMaxSumCombination(ArrayList<Integer> a, ArrayList<Integer> b, int n, int k){
        // Write your code here.
        PriorityQueue<Integer> q = new PriorityQueue<>();
        for(int i  : a)
            for(int j : b)
                if(q.size()<k)
                    q.add(i+j);
                else
                    if(q.peek() < i+j){
                        q.remove();
                        q.add(i+j);
                    }
        ArrayList<Integer> list = new ArrayList<>();
        while(!q.isEmpty()) list.add(0,q.remove()); // it will add values at index 0 only by that way values will keep on shifting
        return list;
    }
}
Enter fullscreen mode Exit fullscreen mode

Merge n sorted Arrays

TC: O(N^2) + O(2*N^2log(N))

import java.util.*;
public class Solution 
{
    public static ArrayList<Integer> mergeKSortedArrays(ArrayList<ArrayList<Integer>> kArrays, int k)
    {
        PriorityQueue<Integer> q = new PriorityQueue<>();
        for(ArrayList<Integer> l : kArrays){
            for(Integer i : l){
                q.add(i);
            }
        }
        ArrayList<Integer> list = new ArrayList<>();
        while(!q.isEmpty()){
            list.add(q.remove());
        }
        return list;
    }
}
Enter fullscreen mode Exit fullscreen mode

Maximum xor from an element in the array

TC: O(N*MLogM), where N is size of queries list, M is size of arr List and LogM is the cost of adding value to priority queue

import java.util.*;
public class Solution {
    public static ArrayList<Integer> maxXorQueries(ArrayList<Integer> arr, ArrayList<ArrayList<Integer>> queries) {
        PriorityQueue<Integer> q = new PriorityQueue<>((a,b)-> b-a);
        ArrayList<Integer> result = new ArrayList<>();
        for( int i =0;i<queries.size();i++){
            int X = queries.get(i).get(0);
            int A = queries.get(i).get(1);
            for(Integer j : arr){
                if(j<=A){
                    q.add(X^j);
                }
            }
            if(!q.isEmpty()){
                result.add(q.remove());
            }
            else result.add(-1);
            q.clear();
        }
        return result;

    }
}
Enter fullscreen mode Exit fullscreen mode

This is will lead to TLE
Hence, Optimized solution can achieve this in O(N*M), ( we won't be using priority queue)

import java.util.*;

public class Solution {
    public static ArrayList<Integer> maxXorQueries(ArrayList<Integer> arr, ArrayList<ArrayList<Integer>> queries) {
        ArrayList<Integer> result = new ArrayList<>();
        for( int i =0;i<queries.size();i++){
            int X = queries.get(i).get(0);
            int A = queries.get(i).get(1);
            int max = -1;
            for(Integer j : arr){
                if(j<=A){
                    max = Integer.max(max,X^j);
                }
            }
            result.add(max);
        }
        return result;

    }
}
Enter fullscreen mode Exit fullscreen mode

Oldest comments (0)

An Animated Guide to Node.js Event Loop

Node.js doesnโ€™t stop from running other operations because of Libuv, a C++ library responsible for the event loop and asynchronously handling tasks such as network requests, DNS resolution, file system operations, data encryption, etc.

What happens under the hood when Node.js works on tasks such as database queries? We will explore it by following this piece of code step by step.