DEV Community

Hegelund Huber
Hegelund Huber

Posted on

Erythropoitein Raises Within Vitro Motility along with Energy associated with Human being Spermatozoa.

Ovarian cancer (OC) is the deadliest gynecologic malignancy, which is mainly due to late-stage diagnosis and chemotherapy resistance. Therefore, new and more effective treatments are urgently needed. The in vitro effects of Panobinostat (LBH), a histone deacetylase inhibitor that exerts pleiotropic antitumor effects but induces autophagy, in combination with Chloroquine (CQ), an autophagy inhibitor that avoid this cell survival mechanism, were evaluated in 4 OC cell lines. LBH and CQ inhibited ovarian cancer cell proliferation and induced apoptosis, and a strong synergistic effect was observed when combined. Deeping into their mechanisms of action we show that, in addition to autophagy modulation, treatment with CQ increased reactive oxygen species (ROS) causing DNA double strand breaks (DSBs), whereas LBH inhibited their repair by avoiding the correct recruitment of the recombinase Rad51 to DSBs. Interestingly, CQ-induced DSBs and cell death caused by CQ/LBH combination were largely abolished by the ROS scavenger N-Acetylcysteine, revealing the critical role of DSB generation in CQ/LBH-induced lethality. This role was also manifested by the synergy found when we combined CQ with Mirin, a well-known homologous recombination repair inhibitor. Altogether, our results provide a rationale for the clinical investigation of CQ/LBH combination in ovarian cancer.Intranasal treatment with oxytocin showed beneficial effects in post-traumatic stress disorder and autism spectrum disorders; however, it was not investigated as much in depression. Keeping in mind the favorable effects of oxytocin on animal models of anxiety and depression, we postulated that synergy between prescribed first choice drugs, selective serotonin reuptake inhibitors (SSRIs) and oxytocin could improve the treatment outcome compared with SSRI monotherapy. Our previous in vitro genome-wide transcriptomic study on human lymphoblastoid cell lines exposed to paroxetine resulted in increase of integrin β3 (ITGB3) gene expression, and further, ITGB3/CHL1 expression ratio was hypothesized to influence the sensitivity to SSRIs. The aim of this report was to explore molecular mechanisms behind the antidepressant-like oxytocin effect, alone and in synergy with citalopram, on behavioral and molecular level in corticosterone treated rats, a paradigm used to model anxiety and depression in animals. Oxytocin treatment (1) ameliorated corticosterone-induced reduction of neurogenesis and number of parvalbumin-positive interneurons in the hippocampal CA1 region, (2) enhanced anxiolytic- and antidepressant-like effects of citalopram in the open field test, and (3) the SSRI/oxytocin synergy persisted in reversing the reduction of the Itgb3 gene expression and increased Itgb3/Chl1 ratio in the prefrontal cortices. These results support the existence of synergy between citalopram and oxytocin in reversing the molecular and behavioral changes induced by corticosterone treatment and point to possible molecular mechanisms behind antidepressant-like effect of oxytocin.Depression and cardiovascular disease reduce quality of life and increase mortality risk. These conditions commonly co-occur with sex-based differences in incidence and severity. However, the biological mechanisms linking the disorders are poorly understood. In the current study, we hypothesized that the infralimbic (IL) prefrontal cortex integrates mood-related behaviors with the cardiovascular burden of chronic stress. In a rodent model, we utilized optogenetics during behavior and in vivo physiological monitoring to examine how the IL regulates affect, social motivation, neuroendocrine-autonomic stress reactivity, and the cardiac consequences of chronic stress. Our results indicate that IL glutamate neurons increase socio-motivational behaviors specifically in males. IL activation also reduced endocrine and cardiovascular stress responses in males, while increasing reactivity in females. Moreover, prior IL stimulation protected males from subsequent chronic stress-induced sympatho-vagal imbalance and cardiac hypertrophy. Our findings suggest that cortical regulation of behavior, physiological stress responses, and cardiovascular outcomes fundamentally differ between sexes.As a severe stage of cancers, peritoneal carcinomatosis should be frequently monitored by means of ascites analysis. Nevertheless, the analysis process is traumatic and time-consuming in clinical practice. In this study, an implantable platinum nanotree microelectrode with a wireless, battery-free and flexible electrochemical patch was developed for in vivo and real-time peritoneal glucose detection to monitor peritoneal carcinomatosis. As the core of implantable microelectrode, platinum trees were synthesized by one-step electrodeposition method and highly sensitive to glucose detection. The platinum nanotree microelectrode was implantable in peritoneal cavity in minimally invasive way. A flexible circuit patch could execute electrochemical test and realize wireless power harvesting and data interaction with a near field communication (NFC)-enabled smartphone. The whole system could detect glucose dynamics in vivo in rat peritoneal cavity. Furthermore, the accuracy of this system was validated in ascites of patients. In this way, the system could offer hassle-free, rapid and minimally invasive opportunities toward peritoneal carcinomatosis monitoring.We describe a miniaturized field-deployable biosensor module, designed to function as an element in a sensor network for standoff monitoring and mapping of environmental hazards. The module harbors live bacterial sensor cells, genetically engineered to emit a bioluminescent signal in the presence of preselected target materials, which act as its core sensing elements. The module, which detects and processes the biological signal, composes a digital record that describes its findings, and can be transmitted to a remote receiver. The module is an autonomous self-contained unit that can function either as a standalone sensor, or as a node in a sensor network. The biosensor module can potentially be used for detecting any target material to which the sensor cells were engineered to respond. The module described herein was constructed to detect the presence of buried landmines underneath its footprint. find more The demonstrated detection sensitivity was 0.25 mg 2,4-dinitrotoluene per Kg soil.find more

Top comments (0)