*My post explains matmul() and dot().
mv() can do matrix-vector multiplication with the 2D and 1D tensor of zero or more elements, getting the 1D tensor of one or more elements:
*Memos:
-
mv()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orcomplex
). *It must be a 2D tensor. - The 2nd argument with
torch
or the 1st argument with a tensor isvec
(Required-Type:tensor
ofint
,float
orcomplex
). *It must be a 1D tensor. - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
import torch
tensor1 = torch.tensor([[2, -5, 4], [-9, 0, 6]])
tensor2 = torch.tensor([3, 6, -1])
torch.mv(input=tensor1, vec=tensor2)
tensor1.mv(vec=tensor2)
# tensor([-28, -33])
tensor1 = torch.tensor([[2., -5., 4.], [-9., 0., 6.]])
tensor2 = torch.tensor([3., 6., -1.])
torch.mv(input=tensor1, vec=tensor2)
# tensor([-28., -33.])
tensor1 = torch.tensor([[2.+0.j, -5.+0.j, 4.+0.j],
[-9.+0.j, 0.+0.j, 6.+0.j]])
tensor2 = torch.tensor([3.+0.j, 6.+0.j, -1.+0.j])
torch.mv(input=tensor1, vec=tensor2)
# tensor([-28.+0.j, -33.+0.j])
tensor1 = torch.tensor([[]])
tensor2 = torch.tensor([])
torch.mv(input=tensor1, vec=tensor2)
# tensor([0.])
mm() can do matrix multiplication with two of the 2D tensor of one or more elements and the 2D tensor of zero or more elements, getting the 2D tensor of zero or more elements:
*Memos:
-
mm()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orcomplex
). *It must be a 2D tesnor. - The 2nd argument with
torch
or the 1st argument with a tensor ismat2
(Required-Type:tensor
ofint
,float
orcomplex
). *It must be a 2D tesnor. - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
import torch
tensor1 = torch.tensor([[2, -5, 4],
[-9, 0, 6]])
tensor2 = torch.tensor([[3, 6, -1, 9],
[-8, 0, 7, -2],
[-7, -3, -4, 5]])
torch.mm(input=tensor1, mat2=tensor2)
tensor1.mm(mat2=tensor2)
# tensor([[18, 0, -53, 48],
# [-69, -72, -15, -51]])
tensor1 = torch.tensor([[2., -5., 4.],
[-9., 0., 6.]])
tensor2 = torch.tensor([[3., 6., -1., 9.],
[-8., 0., 7., -2.],
[-7., -3., -4., 5.]])
torch.mm(input=tensor1, mat2=tensor2)
# tensor([[18., 0., -53., 48.],
# [-69., -72., -15., -51.]])
tensor1 = torch.tensor([[2.+0.j, -5.+0.j, 4.+0.j],
[-9.+0.j, 0.+0.j, 6.+0.j]])
tensor2 = torch.tensor([[3.+0.j, 6.+0.j, -1.+0.j, 9.+0.j],
[-8.+0.j, 0.+0.j, 7.+0.j, -2.+0.j],
[-7.+0.j, -3.+0.j, -4.+0.j, 5.+0.j]])
torch.mm(input=tensor1, mat2=tensor2)
# tensor([[18.+0.j, 0.+0.j, -53.+0.j, 48.+0.j],
# [-69.+0.j, -72.+0.j, -15.+0.j, -51.+0.j]])
tensor1 = torch.tensor([[0.]])
tensor2 = torch.tensor([[]])
torch.mm(input=tensor1, mat2=tensor2)
# tensor([], size=(1, 0))
bmm() can do matrix multiplication with two of the 3D tensor of one or more elements and the 3D tensor of zero or more elements, getting the 3D tensor of zero or more elements:
*Memos:
-
bmm()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orcomplex
). *It must be a 3D tesnor. - The 2nd argument with
torch
or the 1st argument with a tensor ismat2
(Required-Type:tensor
ofint
,float
orcomplex
). *It must be a 3D tesnor. - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. - [My post](https://dev.to/hyperkai/set-out-argument-pytorch-4hj explains
out
argument.
-
import torch
tensor1 = torch.tensor([[[2, -5]], [[-9, 0]]])
tensor2 = torch.tensor([[[3, 6], [-8, 0]],
[[-7, 3], [-4, 5]]])
torch.bmm(input=tensor1, mat2=tensor2)
tensor1.bmm(mat2=tensor2)
# tensor([[[46, 12]],
# [[63, -27]]])
tensor1 = torch.tensor([[[2., -5.]], [[-9., 0.]]])
tensor2 = torch.tensor([[[3., 6.], [-8., 0.]],
[[-7., 3.], [-4., 5.]]])
torch.bmm(input=tensor1, mat2=tensor2)
# tensor([[[46., 12.]],
# [[63., -27.]]])
tensor1 = torch.tensor([[[2.+0.j, -5.+0.j]], [[-9.+0.j, 0.+0.j]]])
tensor2 = torch.tensor([[[3.+0.j, 6.+0.j], [-8.+0.j, 0.+0.j]],
[[-7.+0.j, 3.+0.j], [-4.+0.j, 5.+0.j]]])
torch.bmm(input=tensor1, mat2=tensor2)
# tensor([[[46.+0.j, 12.+0.j]],
# [[63.+0.j, -27.+0.j]]])
tensor1 = torch.tensor([[[0.]]])
tensor2 = torch.tensor([[[]]])
torch.bmm(input=tensor1, mat2=tensor2)
# tensor([], size=(1, 1, 0))
Top comments (0)