DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

heaviside and Identity in PyTorch

Buy Me a Coffee

*Memos:

heaviside() can get the 0D or more D tensor of the zero or more values computed by Heaviside step function from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • heaviside() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is values(Required-Type:tensor of int, float or bool). Image description
import torch
from torch import nn

my_tensor = torch.tensor([8, -3, 0, 1, 5, -2, -1, 4])

torch.heaviside(input=my_tensor,
                values=torch.tensor(0))
my_tensor.heaviside(values=torch.tensor(0))
# tensor([1, 0, 0, 1, 1, 0, 0, 1])

torch.heaviside(input=my_tensor,
                values=torch.tensor([0, 1, 2, 3, 4, 5, 6, 7]))
# tensor([1, 0, 2, 1, 1, 0, 0, 1])

my_tensor = torch.tensor([[8, -3, 0, 1],
                          [5, 0, -1, 4]])
torch.heaviside(input=my_tensor, values=torch.tensor(0))
# tensor([[1, 0, 0, 1],
#         [1, 0, 0, 1]])

torch.heaviside(input=my_tensor,
                values=torch.tensor([[0, 1, 2, 3],
                                     [4, 5, 6, 7]]))
# tensor([[1, 0, 2, 1],
#         [1, 5, 0, 1]])

my_tensor = torch.tensor([[[8, -3], [0, 1]],
                          [[5, 0], [-1, 4]]])
torch.heaviside(input=my_tensor, values=torch.tensor(0))
# tensor([[[1, 0], [0, 1]],
#         [[1, 0], [0, 1]]])

torch.heaviside(input=my_tensor,
                values=torch.tensor([[[0, 1], [2, 3]],
                                     [[4, 5], [6, 7]]]))
# tensor([[[1, 0], [2, 1]],
#         [[1, 5], [0, 1]]])

my_tensor = torch.tensor([[[8., -3.], [0., 1.]],
                          [[5., 0.], [-1., 4.]]])
torch.heaviside(input=my_tensor,
                values=torch.tensor([[[0., 1.], [2., 3.]],
                                      [[4., 5.], [6., 7.]]]))
# tensor([[[1., 0.], [2., 1.]],
#         [[1., 5.], [0., 1.]]])

my_tensor = torch.tensor([[[True, False], [True, False]],
                          [[False, True], [False, True]]])
torch.heaviside(input=my_tensor,
                values=torch.tensor([[[True, False], [True, False]],
                                     [[False, True], [False, True]]]))
# tensor([[[True, False], [True, False]],
#         [[False, True], [False, True]]])
Enter fullscreen mode Exit fullscreen mode

Identity() can just get the same tensor as the input tensor which is the 0D or more D tensor of zero or more elements as shown below:
*Memos:

  • For initialization, you can set 0 or more arguments but there is no influence.
  • The 1st argument is input(Required-Type:tensor of int or float).

Image description

import torch
from torch import nn

my_tensor = torch.tensor([8, -3, 0, 1, 5, -2, -1, 4])

identity = nn.Identity()
identity(input=my_tensor)
# tensor([8, -3, 0, 1, 5, -2, -1, 4])

identity
# Identity()

identity = nn.Identity(num1=3, num2=5)
identity(input=my_tensor)
# tensor([8, -3, 0, 1, 5, -2, -1, 4])

my_tensor = torch.tensor([[8, -3, 0, 1],
                          [5, -2, -1, 4]])
identity = nn.Identity()
identity(input=my_tensor)
# tensor([[8, -3, 0, 1],
#         [5, -2, -1, 4]])

my_tensor = torch.tensor([[[8, -3], [0, 1]],
                          [[5, -2], [-1, 4]]])
identity = nn.Identity()
identity(input=my_tensor)
# tensor([[[8, -3], [0, 1]],
#         [[5, -2], [-1, 4]]])

my_tensor = torch.tensor([[[8., -3.], [0., 1.]],
                          [[5., -2.], [-1., 4.]]])
identity = nn.Identity()
identity(input=my_tensor)
# tensor([[[8., -3.], [0., 1.]],
#         [[5., -2.], [-1., 4.]]])
Enter fullscreen mode Exit fullscreen mode

Top comments (0)