DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

1 1

ElasticTransform in PyTorch (3)

Buy Me a Coffee

*Memos:

ElasticTransform() can do random morphological transformation for an image as shown below. *It's about sigma and fill argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ElasticTransform
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

a5000s01_data = OxfordIIITPet( # `a` is alpha and `s` is sigma.
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=0.1)
    # transform=ElasticTransform(alpha=5000, sigma=[0.1, 0.1])
)

a5000s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=1)
)

a5000s5_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=5)
)

a5000s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=10)
)

a5000s20_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=20)
)

a5000s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=40)
)

a5000s40_01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 0.1])
)

a5000s40_1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 1])
)

a5000s40_5_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 5])
)

a5000s40_10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 10])
)

a5000s40_20_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 20])
)

a5000s40_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 40])
)

a5000s01_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[0.1, 40])
)

a5000s1_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[1, 40])
)

a5000s5_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[5, 40])
)

a5000s10_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[10, 40])
)

a5000s20_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[20, 40])
)

a5000s40_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 40])
)

a5000s5fgray_data = OxfordIIITPet( # `f` is fill.
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=5, fill=150)
    # transform=ElasticTransform(alpha=5000, sigma=5, fill=[150])
)

a5000s10fgray_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=10, fill=150)
)

a5000s5fpurple_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=5, fill=[160, 32, 240])
)

a5000s10fpurple_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=10, fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=a5000s01_data, main_title="a5000s01_data")
show_images1(data=a5000s1_data, main_title="a5000s1_data")
show_images1(data=a5000s5_data, main_title="a5000s5_data")
show_images1(data=a5000s10_data, main_title="a5000s10_data")
show_images1(data=a5000s20_data, main_title="a5000s20_data")
show_images1(data=a5000s40_data, main_title="a5000s40_data")
print()
show_images1(data=a5000s40_01_data, main_title="a5000s40_01_data")
show_images1(data=a5000s40_1_data, main_title="a5000s40_1_data")
show_images1(data=a5000s40_5_data, main_title="a5000s40_5_data")
show_images1(data=a5000s40_10_data, main_title="a5000s40_10_data")
show_images1(data=a5000s40_20_data, main_title="a5000s40_20_data")
show_images1(data=a5000s40_40_data, main_title="a5000s40_40_data")
print()
show_images1(data=a5000s01_40_data, main_title="a5000s01_40_data")
show_images1(data=a5000s1_40_data, main_title="a5000s1_40_data")
show_images1(data=a5000s5_40_data, main_title="a5000s5_40_data")
show_images1(data=a5000s10_40_data, main_title="a5000s10_40_data")
show_images1(data=a5000s20_40_data, main_title="a5000s20_40_data")
show_images1(data=a5000s40_40_data, main_title="a5000s40_40_data")
print()
show_images1(data=a5000fgray_data, main_title="a5000fgray_data")
show_images1(data=a10000fgray_data, main_title="a10000fgray_data")
show_images1(data=a5000fpurple_data, main_title="a5000fpurple_data")
show_images1(data=a10000fpurple_data, main_title="a10000fpurple_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, a=50, s=5, 
                 ip=InterpolationMode.BILINEAR, f=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            et = ElasticTransform(alpha=a, sigma=s,
                                  interpolation=ip, fill=f)
            plt.imshow(X=et(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="a5000s01_data", a=5000, s=0.1)
show_images2(data=origin_data, main_title="a5000s1_data", a=5000, s=1)
show_images2(data=origin_data, main_title="a5000s5_data", a=5000, s=5)
show_images2(data=origin_data, main_title="a5000s10_data", a=5000, s=10)
show_images2(data=origin_data, main_title="a5000s20_data", a=5000, s=20)
show_images2(data=origin_data, main_title="a5000s40_data", a=5000, s=40)
print()
show_images2(data=origin_data, main_title="a5000s40_01_data", a=5000,
             s=[40, 0.1])
show_images2(data=origin_data, main_title="a5000s40_1_data", a=5000,
             s=[40, 1])
show_images2(data=origin_data, main_title="a5000s40_5_data", a=5000,
             s=[40, 5])
show_images2(data=origin_data, main_title="a5000s40_10_data", a=5000,
             s=[40, 10])
show_images2(data=origin_data, main_title="a5000s40_20_data", a=5000,
             s=[40, 20])
show_images2(data=origin_data, main_title="a5000s40_40_data", a=5000,
             s=[40, 40])
print()
show_images2(data=origin_data, main_title="a5000s01_40_data", a=5000,
             s=[0.1, 40])
show_images2(data=origin_data, main_title="a5000s1_40_data", a=5000,
             s=[1, 40])
show_images2(data=origin_data, main_title="a5000s5_40_data", a=5000,
             s=[5, 40])
show_images2(data=origin_data, main_title="a5000s10_40_data", a=5000,
             s=[10, 40])
show_images2(data=origin_data, main_title="a5000s20_40_data", a=5000,
             s=[20, 40])
show_images2(data=origin_data, main_title="a5000s40_40_data", a=5000,
             s=[40, 40])
print()
show_images2(data=origin_data, main_title="a5000fgray_data", a=5000, f=150)
show_images2(data=origin_data, main_title="a10000fgray_data", a=10000, f=150)
show_images2(data=origin_data, main_title="a5000fpurple_data", a=5000,
             f=[160, 32, 240])
show_images2(data=origin_data, main_title="a10000fpurple_data", a=10000,
             f=[160, 32, 240])
print()
show_images2(data=origin_data, main_title="a5000s5fgray_data", a=5000, 
             s=5, f=150)
show_images2(data=origin_data, main_title="a5000s10fgray_data", a=5000, 
             s=10, f=150)
print()
show_images2(data=origin_data, main_title="a5000s5fpurple_data", a=5000, 
             s=5, f=[160, 32, 240])
show_images2(data=origin_data, main_title="a5000s10fpurple_data", a=5000, 
             s=10, f=[160, 32, 240])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description


Image description

Image description

Heroku

Built for developers, by developers.

Whether you're building a simple prototype or a business-critical product, Heroku's fully-managed platform gives you the simplest path to delivering apps quickly — using the tools and languages you already love!

Learn More

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

DEV is better (more customized, reading settings like dark mode etc) when you're signed in!

Okay