*Memos:
- My post explains Batch Gradient Descent without DataLoader() in PyTorch.
- My post explains Batch, Mini-Batch and Stochastic Gradient Descent in PyTorch.
- My post explains Linear Regression in PyTorch.
- My post explains how to save a model in PyTorch.
- My post explains how to load a saved model in PyTorch.
- My post explains Deep Learning Workflow in PyTorch.
- My repo has models.
This is Batch Gradient Descent(BGD), Mini-Batch Gradient Descent(MBGD) or Stochastic Gradient Descent(SGD) with DataLoader()
and non-shuffled or shuffled dataset as shown below:
*Memos:
- I used DataLoader() to shuffle dataset and to set batch size in the example below:
*Memos:
-
next() and iter() with
DataLoader()
(Recommended) is much faster than list() withDataLoader()
(Not Recommended). - Basically datasets are shuffled to mitigate Overfitting.
- Basically, only train data is shuffled so test data is not shuffled.
- My post explains Overfitting and Underfitting.
-
My post explains
DataLoader()
-
next() and iter() with
# Much faster(Recommended)
torch.manual_seed(42)
X_train = next(iter(DataLoader(dataset=X_train,
batch_size=40,
shuffle=True)))
torch.manual_seed(42)
Y_train = next(iter(DataLoader(dataset=Y_train,
batch_size=40,
shuffle=True)))
# Much slower(Not Recommended)
torch.manual_seed(42)
X_train = list(DataLoader(dataset=X_train,
batch_size=40,
shuffle=True))[0]
torch.manual_seed(42)
Y_train = list(DataLoader(dataset=Y_train,
batch_size=40,
shuffle=True))[0]
- My post explains cuda.is_available()
- My post explains Module().
- My post explains Linear().
- My post explains L1Loss().
- My post explains SGD().
import torch
from torch import nn
from torch import optim
from torch.utils.data import DataLoader
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
""" Prepare dataset """
weight = 0.8
bias = 0.5
X = torch.tensor([[0.00], [0.02], [0.04], [0.06], [0.08], # Size(50, 1)
[0.10], [0.12], [0.14], [0.16], [0.18],
[0.20], [0.22], [0.24], [0.26], [0.28],
[0.30], [0.32], [0.34], [0.36], [0.38],
[0.40], [0.42], [0.44], [0.46], [0.48],
[0.50], [0.52], [0.54], [0.56], [0.58],
[0.60], [0.62], [0.64], [0.66], [0.68],
[0.70], [0.72], [0.74], [0.76], [0.78],
[0.80], [0.82], [0.84], [0.86], [0.88],
[0.90], [0.92], [0.94], [0.96], [0.98]], device=device)
Y = weight * X + bias
l = int(0.8 * len(X))
X_train, Y_train, X_test, Y_test = X[:l], Y[:l], X[l:], Y[l:]
# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Uncomment it to shuffle dataset ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
# torch.manual_seed(42)
# X_train = next(iter(DataLoader(dataset=X_train,
# batch_size=40,
# shuffle=True)))
# torch.manual_seed(42)
# Y_train = next(iter(DataLoader(dataset=Y_train,
# batch_size=40,
# shuffle=True)))
""" Prepare dataset """
""" Prepare model, loss function and optimizer """
class LinearRegressionModel(nn.Module):
def __init__(self):
super().__init__()
self.linear_layer = nn.Linear(in_features=1, out_features=1)
def forward(self, x):
return self.linear_layer(x)
torch.manual_seed(42)
my_model = LinearRegressionModel().to(device)
loss_fn = nn.L1Loss()
optimizer = optim.SGD(params=my_model.parameters(), lr=0.01)
""" Prepare model, loss function and optimizer """
""" Train and test model """
epochs = 100
epoch_count = []
loss_values = []
test_loss_values = []
for epoch in range(epochs):
X_train_dl = DataLoader(dataset=X_train, batch_size=40) # BGD
Y_train_dl = DataLoader(dataset=Y_train, batch_size=40) # BGD
# X_train_dl = DataLoader(dataset=X_train, batch_size=10) # MBGD
# Y_train_dl = DataLoader(dataset=Y_train, batch_size=10) # MBGD
# X_train_dl = DataLoader(dataset=X_train, batch_size=1) # SGD
# Y_train_dl = DataLoader(dataset=Y_train, batch_size=1) # SGD
X_Y_train_dl = zip(X_train_dl, Y_train_dl)
for X_train_batch, Y_train_batch in X_Y_train_dl:
""" Train """
my_model.train()
# 1. Calculate predictions(Forward propagation)
Y_pred = my_model(X_train_batch)
# 2. Calculate loss
loss = loss_fn(Y_pred, Y_train_batch)
# 3. Zero out gradients
optimizer.zero_grad()
# 4. Calculate a gradient(Backpropagation)
loss.backward()
# 5. Update parameters
optimizer.step()
""" Train """
""" Test """
my_model.eval()
with torch.inference_mode():
Y_test_pred = my_model(x=X_test)
test_loss = loss_fn(Y_test_pred, Y_test)
if epoch % 10 == 0:
epoch_count.append(epoch)
loss_values.append(loss)
test_loss_values.append(test_loss)
# print(f"Epoch: {epoch} | Loss: {loss} | Test loss: {test_loss}")
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Uncomment it to see the details ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
""" Test """
""" Train and test model """
""" Visualize train and test data and predictions"""
import matplotlib.pyplot as plt
with torch.inference_mode():
Y_pred = my_model(x=X_test)
def plot_predictions(X_train, Y_train, X_test, Y_test, predictions=None):
plt.figure(figsize=[6, 4])
plt.scatter(x=X_train, y=Y_train, c='g', s=5, label='Train data(Green)')
plt.scatter(x=X_test, y=Y_test, c='b', s=15, label='Test data(Blue)')
if predictions is not None:
plt.scatter(x=X_test, y=predictions, c='r',
s=15, label='Predictions(Red)')
plt.title(label="Train and test data and predictions", fontsize=14)
plt.legend(fontsize=14)
plot_predictions(X_train=X_train.cpu(),
Y_train=Y_train.cpu(),
X_test=X_test.cpu(),
Y_test=Y_test.cpu(),
predictions=Y_pred.cpu())
""" Visualize train and test data, predictions"""
""" Visualize train and test loss """
def plot_loss_curves(epoch_count, loss_values, test_loss_values):
plt.figure(figsize=[6, 4])
plt.plot(epoch_count, loss_values, label="Train loss")
plt.plot(epoch_count, test_loss_values, label="Test loss")
plt.title(label="Train and test loss curves", fontsize=14)
plt.ylabel(ylabel="Loss", fontsize=14)
plt.xlabel(xlabel="Epochs", fontsize=14)
plt.legend(fontsize=14)
plot_loss_curves(epoch_count=epoch_count,
loss_values=torch.tensor(loss_values).cpu(),
test_loss_values=torch.tensor(test_loss_values).cpu())
""" Visualize train and test loss """
Top comments (0)