DEV Community

Gias Uddin
Gias Uddin

Posted on

Deploying Django Application on AWS with Terraform, AWS,ECS FARGATE ,Load Balencher

Introduction
The final goal of this guide is to create a scalable and reproducible setup of the Django Web Application on AWS using Terraform.

Github Project for Source Code

Local dependencies:

  1. Terraform v1.2.1.
  2. Python v3.10.
  3. Docker v20.10.14.
  4. AWS CLI v2.6.1

About Terraform
As official Terraform docs says

Terraform is an infrastructure as code (IaC) tool that allows you to build, change, and version infrastructure safely and efficiently. This includes both low-level components like compute instances, storage, and networking, as well as high-level components like DNS entries and SaaS features.

Basically, Terraform project represents your current infrastructure state as a set of configuration files. You can easily create, update and delete parts of your cloud infrastructure by changing these files. After describing the new infrastructure state, you can review the plan of changes and apply them. We will create a separate project for Terraform using Git to preserve the history of changes and collaborative work in the future.

If you're new to Terraform, review the Introduction to Terraform article and go through the Getting Started guide.

Creating minimal working setup
In this part, we will run through the basic setup of an AWS account, create Terraform project, and define resources for our web application. As a result, we will deploy the Django application on the AWS ECS. It will respond in a browser by Load Balancer URL.

Image description

Creating Django project
Let's start with a Django application. Create a new folder and initialize a default Django project.

$ mkdir django-aws && cd django-aws
$ mkdir django-aws-backend && cd django-aws-backend
$ git init --initial-branch=main
$ python3.10 -m venv venv
$ . ./venv/bin/activate
(venv) $ pip install Django==3.2.13
(venv) $ django-admin startproject django_aws .
(venv) $ ./manage.py migrate
(venv) $ ./manage.py runserver
Enter fullscreen mode Exit fullscreen mode

Check a Django greeting page at http://127.0.0.1:8000, ensure that Django is running, and kill the development server.

Image description

Now we are going to dockerize our application. First, add a requirements.txt file to the Django project:

Django==3.2.13
For testing purposes, enable debug mode and allow all hosts in settings.py

DEBUG = True

ALLOWED_HOSTS = ['*']

Enter fullscreen mode Exit fullscreen mode

Then add Dockerfile in the current directory:

FROM python:3.10-slim-buster

# Open http port
EXPOSE 8000

ENV PYTHONUNBUFFERED 1
ENV PYTHONDONTWRITEBYTECODE 1
ENV DEBIAN_FRONTEND noninteractive

# Install pip and gunicorn web server
RUN pip install --no-cache-dir --upgrade pip
RUN pip install gunicorn==20.1.0

# Install requirements.txt
COPY requirements.txt /
RUN pip install --no-cache-dir -r /requirements.txt

# Moving application files
WORKDIR /app
COPY . /app

Enter fullscreen mode Exit fullscreen mode

Build and run docker container locally.

$ docker build . -t django-aws-backend
$ docker run -p 8000:8000 django-aws-backend gunicorn -b 0.0.0.0:8000 django_aws.wsgi:application

Enter fullscreen mode Exit fullscreen mode

Go to the http://127.0.0.1:8000 page and verify that we successfully build and run the docker image with a Django application. You should see exactly the same greeting page as for the runserver command.
Let's add a .gitignore file:

*.sqlite3
.idea
.env
venv
.DS_Store
__pycache__
static
media

Enter fullscreen mode Exit fullscreen mode

and commit our changes:

$ git add .
$ git commit -m "initial commit"

Enter fullscreen mode Exit fullscreen mode

For now, we are done with the Django part. In the following steps, we deploy this application on AWS. But first, we need to create an AWS account.

Creating an AWS account
Go to aws.amazon.com and create an account. This process required your personal contact information and your credit card. After you finish, sign in to the AWS Console.

AWS Console is a web application for managing AWS users, access policies, and other resources. Here you can see your infrastructure state, browse application logs and see the actual changes committed by Terraform.

Everything you need to access and manage the AWS Cloud — in one web interface

Now, we need to create credentials for AWS CLI and Terraform. We'll create a new user with administration access to the AWS account. This user will be able to create and change resources on your AWS account.

Now we can configure AWS CLI and check our credentials. We will use the us-east-2 region in this guide. Feel free to change it.

$ aws configure
AWS Access Key ID [None]: AKU832EUBFEFWICT
AWS Secret Access Key [None]: 5HZMEFi4ff4F4DEi24HYEsOPDNE8DYWTzCx
Default region name [us-east-2]: us-east-2
Default output format [table]: table
$ aws sts get-caller-identity
-----------------------------------------------------
|                 GetCallerIdentity                 |
+---------+-----------------------------------------+
|  Account|  947134793474                           |  <- AWS_ACCOUNT_ID
|  Arn    |  arn:aws:iam::947134793474:user/admin   |
|  UserId |  AIDJEFFEIUFBFUR245EPV                  |
+---------+-----------------------------------------+


Enter fullscreen mode Exit fullscreen mode

Remember your AWS_ACCOUNT_ID. We'll use it in the next steps.

Now we are all set up to create Terraform project!

Creating Terraform Project
Let's create a new folder django-aws/django-aws-infrastructure for our Terraform project.

cd ..
mkdir django-aws-infrastructure && cd django-aws-infrastructure
git init --initial-branch=main

Enter fullscreen mode Exit fullscreen mode

Add a file provider.tf:

provider "aws" {
  region = var.region
}

Enter fullscreen mode Exit fullscreen mode

Here, we defined the AWS provider. We use Terraform variable for specifying an AWS region. Let's define region and project_name variables in the variables.tf file:

variable "region" {
  description = "The AWS region to create resources in."
  default     = "us-east-2"
}

variable "project_name" {
  description = "Project name to use in resource names"
  default     = "django-aws"
}


Enter fullscreen mode Exit fullscreen mode

Run terraform init to create a new Terraform working directory and download the AWS provider.

Now we are ready to create resources for our infrastructure.

AWS Resources
Here is the plan, what we are going to configure.

ECR
Networking:
VPC
Public and private subnets
Routing tables
Internet and NAT gateways
Load Balancer:
Listener
Target Groups
Security Groups
ECS:
Cluster
Task definition
Service
IAM Roles and Policies
To keep code clean, we will follow this naming convention in this guide.

ECR
First, we'll create a Docker registry and push our image to it. Create a ecr.tf file:

resource "aws_ecr_repository" "backend" {
  name                 = "${var.project_name}-backend"
  image_tag_mutability = "MUTABLE"
}


Enter fullscreen mode Exit fullscreen mode

Then run terraform plan. You'll see that Terraform is going to create an ECR repository.

Terraform will perform the following actions:

  # aws_ecr_repository.backend will be created
  + resource "aws_ecr_repository" "backend" {
      ...
    }

Plan: 1 to add, 0 to change, 0 to destroy.


Enter fullscreen mode Exit fullscreen mode

Run terraform apply. You should see the same plan again. Type yes to confirm changes.

aws_ecr_repository.backend: Creating...
aws_ecr_repository.backend: Creation complete after 1s [id=django-aws-backend]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.


Enter fullscreen mode Exit fullscreen mode

The repository is created. Now, let's push our Django image to this new registry. You need to build an image with tag ${AWS_ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/django-aws-backend:latest, authorize in the ECR, and push an image:

$ cd ../django-aws-backend
$ docker build . -t 947134793474.dkr.ecr.us-east-2.amazonaws.com/django-aws-backend:latest
$ aws ecr get-login-password --region us-east-2 | docker login --username AWS --password-stdin 947134793474.dkr.ecr.us-east-2.amazonaws.com
$ docker push 947134793474.dkr.ecr.us-east-2.amazonaws.com/django-aws-backend:latest

Enter fullscreen mode Exit fullscreen mode

Network
Now, let's create a network for our application. Add this block to the variables.tf file:

variable "availability_zones" {
  description = "Availability zones"
  default     = ["us-east-2a", "us-east-2c"]
}


Enter fullscreen mode Exit fullscreen mode

And create a network.tf file with the following content:

# Production VPC
resource "aws_vpc" "prod" {
  cidr_block           = "10.0.0.0/16"
  enable_dns_support   = true
  enable_dns_hostnames = true
}

# Public subnets
resource "aws_subnet" "prod_public_1" {
  cidr_block        = "10.0.1.0/24"
  vpc_id            = aws_vpc.prod.id
  availability_zone = var.availability_zones[0]
  tags = {
    Name = "prod-public-1"
  }
}
resource "aws_subnet" "prod_public_2" {
  cidr_block        = "10.0.2.0/24"
  vpc_id            = aws_vpc.prod.id
  availability_zone = var.availability_zones[1]
  tags = {
    Name = "prod-public-2"
  }
}

# Private subnets
resource "aws_subnet" "prod_private_1" {
  cidr_block        = "10.0.3.0/24"
  vpc_id            = aws_vpc.prod.id
  availability_zone = var.availability_zones[0]
  tags = {
    Name = "prod-private-1"
  }
}
resource "aws_subnet" "prod_private_2" {
  cidr_block        = "10.0.4.0/24"
  vpc_id            = aws_vpc.prod.id
  availability_zone = var.availability_zones[1]
  tags = {
    Name = "prod-private-2"
  }
}

# Route tables and association with the subnets
resource "aws_route_table" "prod_public" {
  vpc_id = aws_vpc.prod.id
}
resource "aws_route_table_association" "prod_public_1" {
  route_table_id = aws_route_table.prod_public.id
  subnet_id      = aws_subnet.prod_public_1.id
}
resource "aws_route_table_association" "prod_public_2" {
  route_table_id = aws_route_table.prod_public.id
  subnet_id      = aws_subnet.prod_public_2.id
}

resource "aws_route_table" "prod_private" {
  vpc_id = aws_vpc.prod.id
}
resource "aws_route_table_association" "private_1" {
  route_table_id = aws_route_table.prod_private.id
  subnet_id      = aws_subnet.prod_private_1.id
}
resource "aws_route_table_association" "private_2" {
  route_table_id = aws_route_table.prod_private.id
  subnet_id      = aws_subnet.prod_private_2.id
}

# Internet Gateway for the public subnet
resource "aws_internet_gateway" "prod" {
  vpc_id = aws_vpc.prod.id
}
resource "aws_route" "prod_internet_gateway" {
  route_table_id         = aws_route_table.prod_public.id
  gateway_id             = aws_internet_gateway.prod.id
  destination_cidr_block = "0.0.0.0/0"
}

# NAT gateway
resource "aws_eip" "prod_nat_gateway" {
  vpc                       = true
  associate_with_private_ip = "10.0.0.5"
  depends_on                = [aws_internet_gateway.prod]
}
resource "aws_nat_gateway" "prod" {
  allocation_id = aws_eip.prod_nat_gateway.id
  subnet_id     = aws_subnet.prod_public_1.id
}
resource "aws_route" "prod_nat_gateway" {
  route_table_id         = aws_route_table.prod_private.id
  nat_gateway_id         = aws_nat_gateway.prod.id
  destination_cidr_block = "0.0.0.0/0"
}


Enter fullscreen mode Exit fullscreen mode

Here, we've defined the following resources:

Virtual Private Cloud.
Public and Private subnets in different Availability zones
Internet Gateway for internet access for public subnets.
NAT Gateway for internet access for private subnets.
Run terraform apply to apply changes on AWS.

Load Balancer
Next, create a load_balancer.tf file with the following content:

# Application Load Balancer for production
resource "aws_lb" "prod" {
  name               = "prod"
  load_balancer_type = "application"
  internal           = false
  security_groups    = [aws_security_group.prod_lb.id]
  subnets            = [aws_subnet.prod_public_1.id, aws_subnet.prod_public_2.id]
}

# Target group for backend web application
resource "aws_lb_target_group" "prod_backend" {
  name        = "prod-backend"
  port        = 80
  protocol    = "HTTP"
  vpc_id      = aws_vpc.prod.id
  target_type = "ip"

  health_check {
    path                = "/"
    port                = "traffic-port"
    healthy_threshold   = 5
    unhealthy_threshold = 2
    timeout             = 2
    interval            = 5
    matcher             = "200"
  }
}

# Target listener for http:80
resource "aws_lb_listener" "prod_http" {
  load_balancer_arn = aws_lb.prod.id
  port              = "80"
  protocol          = "HTTP"
  depends_on        = [aws_lb_target_group.prod_backend]

  default_action {
    type             = "forward"
    target_group_arn = aws_lb_target_group.prod_backend.arn
  }
}

# Allow traffic from 80 and 443 ports only
resource "aws_security_group" "prod_lb" {
  name        = "prod-lb"
  description = "Controls access to the ALB"
  vpc_id      = aws_vpc.prod.id

  ingress {
    from_port   = 80
    to_port     = 80
    protocol    = "tcp"
    cidr_blocks = ["0.0.0.0/0"]
  }

  ingress {
    from_port   = 443
    to_port     = 443
    protocol    = "tcp"
    cidr_blocks = ["0.0.0.0/0"]
  }

  egress {
    from_port   = 0
    to_port     = 0
    protocol    = "-1"
    cidr_blocks = ["0.0.0.0/0"]
  }
}
Enter fullscreen mode Exit fullscreen mode

Here we are going to create:

Application Load Balancer
LB Listener to receive incoming HTTP requests.
LB Target group to route requests to the Django application.
Security Group to control incoming traffic to load balancer.
Also, we want to know the load balancer URL. Add a outputs.tf file with the following code and run terraform apply to create load balancer and see its hostname.

output "prod_lb_domain" {
  value = aws_lb.prod.dns_name
}

Enter fullscreen mode Exit fullscreen mode

You should see your ALB domain in output.

Outputs:

prod_lb_hostname = "prod-57218461274.us-east-2.elb.amazonaws.com"


Enter fullscreen mode Exit fullscreen mode

Visit this domain in your browser. It should respond with 503 Service Temporarily Unavailable error because there are no targets associated with the target group yet. In the next step, we'll deploy the Django application that will be accessible by this URL.

Application
Finally, we'll create the application ECS Service. Add a ecs.tf file with following content:

# Production cluster
resource "aws_ecs_cluster" "prod" {
  name = "prod"
}

# Backend web task definition and service
resource "aws_ecs_task_definition" "prod_backend_web" {
  network_mode             = "awsvpc"
  requires_compatibilities = ["FARGATE"]
  cpu                      = 256
  memory                   = 512

  family = "backend-web"
  container_definitions = templatefile(
    "templates/backend_container.json.tpl",
    {
      region     = var.region
      name       = "prod-backend-web"
      image      = aws_ecr_repository.backend.repository_url
      command    = ["gunicorn", "-w", "3", "-b", ":8000", "django_aws.wsgi:application"]
      log_group  = aws_cloudwatch_log_group.prod_backend.name
      log_stream = aws_cloudwatch_log_stream.prod_backend_web.name
    },
  )
  execution_role_arn = aws_iam_role.ecs_task_execution.arn
  task_role_arn      = aws_iam_role.prod_backend_task.arn
}

resource "aws_ecs_service" "prod_backend_web" {
  name                               = "prod-backend-web"
  cluster                            = aws_ecs_cluster.prod.id
  task_definition                    = aws_ecs_task_definition.prod_backend_web.arn
  desired_count                      = 1
  deployment_minimum_healthy_percent = 50
  deployment_maximum_percent         = 200
  launch_type                        = "FARGATE"
  scheduling_strategy                = "REPLICA"

  load_balancer {
    target_group_arn = aws_lb_target_group.prod_backend.arn
    container_name   = "prod-backend-web"
    container_port   = 8000
  }

  network_configuration {
    security_groups  = [aws_security_group.prod_ecs_backend.id]
    subnets          = [aws_subnet.prod_private_1.id, aws_subnet.prod_private_2.id]
    assign_public_ip = false
  }
}

# Security Group
resource "aws_security_group" "prod_ecs_backend" {
  name        = "prod-ecs-backend"
  vpc_id      = aws_vpc.prod.id

  ingress {
    from_port       = 0
    to_port         = 0
    protocol        = "-1"
    security_groups = [aws_security_group.prod_lb.id]
  }

  egress {
    from_port   = 0
    to_port     = 0
    protocol    = "-1"
    cidr_blocks = ["0.0.0.0/0"]
  }
}

# IAM roles and policies
resource "aws_iam_role" "prod_backend_task" {
  name = "prod-backend-task"

  assume_role_policy = jsonencode({
    Version = "2012-10-17",
    Statement = [
      {
        Action = "sts:AssumeRole",
        Principal = {
          Service = "ecs-tasks.amazonaws.com"
        },
        Effect = "Allow",
        Sid    = ""
      }
    ]
  })
}

resource "aws_iam_role" "ecs_task_execution" {
  name = "ecs-task-execution"

  assume_role_policy = jsonencode(
    {
      Version = "2012-10-17",
      Statement = [
        {
          Action = "sts:AssumeRole",
          Principal = {
            Service = "ecs-tasks.amazonaws.com"
          },
          Effect = "Allow",
          Sid    = ""
        }
      ]
    }
  )
}

resource "aws_iam_role_policy_attachment" "ecs-task-execution-role-policy-attachment" {
  role       = aws_iam_role.ecs_task_execution.name
  policy_arn = "arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy"
}

# Cloudwatch Logs
resource "aws_cloudwatch_log_group" "prod_backend" {
  name              = "prod-backend"
  retention_in_days = var.ecs_prod_backend_retention_days
}

resource "aws_cloudwatch_log_stream" "prod_backend_web" {
  name           = "prod-backend-web"
  log_group_name = aws_cloudwatch_log_group.prod_backend.name
}


Enter fullscreen mode Exit fullscreen mode

Also, add the ecs_prod_backend_retention_days variable to the variables.tf file:

variable "ecs_prod_backend_retention_days" {
  description = "Retention period for backend logs"
  default     = 30
}
Enter fullscreen mode Exit fullscreen mode

and add a container definition in a new templates/backend_container.json.tpl file and run terraform apply.

[
  {
    "name": "${name}",
    "image": "${image}",
    "essential": true,
    "links": [],
    "portMappings": [
      {
        "containerPort": 8000,
        "hostPort": 8000,
        "protocol": "tcp"
      }
    ],
    "command": ${jsonencode(command)},
    "logConfiguration": {
      "logDriver": "awslogs",
      "options": {
        "awslogs-group": "${log_group}",
        "awslogs-region": "${region}",
        "awslogs-stream-prefix": "${log_stream}"
      }
    }
  }
]


Enter fullscreen mode Exit fullscreen mode

Here we've created:

ECS Cluster
ECS Task Definition
ECS Service to run tasks with the specified definition in the ECS cluster
IAM Policies to allow tasks access to resources.
Cloudwatch Log group and stream for log collection.
Now, go to the AWS Console and look at your running service and tasks.

Check the Load Balancer domain in a browser to ensure that our setup works. You should see Django's starting page.

Image description

Bottom line
Congratulations! Now we have deployed the Django web application with ECS Service + Fargate. But now it works with SQLite file database. This file will be recreated on every service restart. So, our app cannot persist any data for now. In the next article we'll connect Django to AWS RDS PostgreSQL.

If you need technical consulting on your project, check out our website or connect with me directly on LinkedIn.

Top comments (0)