Creating a utility to generate 100 MongoDB collections, each populated with 1 million random documents, and deploying it on Kubernetes involves several steps. This guide walks through the process, from setting up a Kubernetes environment to generating the collections and deploying the job in a dedicated namespace.
1. Setting Up Your Kubernetes Environment
Ensure you have a Kubernetes cluster (such as GKE, EKS, AKS, or Minikube) and configure kubectl to connect to it.
2. Create a Dedicated Namespace
To keep this deployment isolated, create a namespace called my-lab:
kubectl create namespace my-lab
kubectl get ns my-lab
3. Deploy MongoDB on Kubernetes
Create a Persistent Volume (PV)
Create a mongo-pv.yaml file to define a persistent volume for MongoDB data:
apiVersion: v1
kind: PersistentVolume
metadata:
name: mongo-pv
namespace: my-lab
spec:
capacity:
storage: 10Gi
accessModes:
- ReadWriteOnce
hostPath:
path: /data/mongo
Apply the PV:
kubectl apply -f mongo-pv.yaml
Create a Persistent Volume Claim (PVC)
Define a persistent volume claim in mongo-pvc.yaml:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mongo-pvc
namespace: my-lab
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
Apply the PVC:
kubectl apply -f mongo-pvc.yaml
Create a MongoDB Deployment
Define the MongoDB deployment and service in mongo-deployment.yaml:
apiVersion: apps/v1
kind: Deployment
metadata:
name: mongo
namespace: my-lab
spec:
replicas: 1
selector:
matchLabels:
app: mongo
template:
metadata:
labels:
app: mongo
spec:
containers:
- name: mongo
image: mongo:latest
ports:
- containerPort: 27017
env:
- name: MONGO_INITDB_ROOT_USERNAME
value: "root"
- name: MONGO_INITDB_ROOT_PASSWORD
value: "password"
volumeMounts:
- name: mongo-storage
mountPath: /data/db
volumes:
- name: mongo-storage
persistentVolumeClaim:
claimName: mongo-pvc
---
apiVersion: v1
kind: Service
metadata:
name: mongo
namespace: my-lab
spec:
type: ClusterIP
ports:
- port: 27017
targetPort: 27017
selector:
app: mongo
Apply the deployment:
kubectl apply -f mongo-deployment.yaml
4. Connect to MongoDB
Verify the MongoDB deployment by connecting to it:
kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password
5. Verify Persistence
Scale down and then back up the MongoDB deployment to ensure data persists:
kubectl scale deployment mongo --replicas=0 -n my-lab
kubectl scale deployment mongo --replicas=1 -n my-lab
6. Create a Python Utility for Collection Generation
Using Python, define a script to create collections and populate them with random documents:
import random
import string
import pymongo
from pymongo import MongoClient
def random_string(length=10):
return ''.join(random.choices(string.ascii_letters + string.digits, k=length))
def create_collections_and_populate(db_name='mydatabase', collections_count=100, documents_per_collection=1_000_000):
client = MongoClient('mongodb://root:password@mongo:27017/')
db = client[db_name]
for i in range(collections_count):
collection_name = f'collection_{i+1}'
collection = db[collection_name]
print(f'Creating collection: {collection_name}')
bulk_data = [{'name': random_string(), 'value': random.randint(1, 100)} for _ in range(documents_per_collection)]
collection.insert_many(bulk_data)
print(f'Inserted {documents_per_collection} documents into {collection_name}')
if __name__ == "__main__":
create_collections_and_populate()
7. Dockerize the Python Utility
Create a Dockerfile to containerize the Python script:
FROM python:3.9-slim
WORKDIR /app
COPY mongo_populator.py .
RUN pip install pymongo
CMD ["python", "mongo_populator.py"]
Build and push the image to a container registry:
docker build -t <your-docker-repo>/mongo-populator:latest .
docker push <your-docker-repo>/mongo-populator:latest
8. Create a Kubernetes Job
Define a job in mongo-populator-job.yaml to run the collection generation script:
apiVersion: batch/v1
kind: Job
metadata:
name: mongo-populator
namespace: my-lab
spec:
template:
spec:
containers:
- name: mongo-populator
image: <your-docker-repo>/mongo-populator:latest
env:
- name: MONGO_URI
value: "mongodb://root:password@mongo:27017/"
restartPolicy: Never
backoffLimit: 4
Apply the job:
kubectl apply -f mongo-populator-job.yaml
9. Verify Collection Generation
After the job completes, connect to MongoDB to examine the data:
kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password
In MongoDB:
use mydatabase
show collections
db.collection_9.find().limit(5).pretty()
db.getCollectionNames().forEach(function(collection) {
var count = db[collection].countDocuments();
print(collection + ": " + count + " documents");
});
Each collection should contain 1 million documents, confirming that the data generation job was successful.
Top comments (0)