Data Science at Home
Attacking machine learning for fun and profit (with the authors of SecML Ep. 80)
Join the discussion on our Discord server
As ML plays a more and more relevant role in many domains of everyday life, it’s quite obvious to see more and more attacks to ML systems. In this episode we talk about the most popular attacks against machine learning systems and some mitigations designed by researchers Ambra Demontis and Marco Melis, from the University of Cagliari (Italy). The guests are also the authors of SecML, an open-source Python library for the security evaluation of Machine Learning (ML) algorithms. Both Ambra and Marco are members of research group PRAlab, under the supervision of Prof. Fabio Roli.
SecML ContributorsMarco Melis (Ph.D Student, Project Maintainer, https://www.linkedin.com/in/melismarco/) Ambra Demontis (Postdoc, https://pralab.diee.unica.it/it/AmbraDemontis) Maura Pintor (Ph.D Student, https://it.linkedin.com/in/maura-pintor) Battista Biggio (Assistant Professor, https://pralab.diee.unica.it/it/BattistaBiggio)
ReferencesSecML: an open-source Python library for the security evaluation of Machine Learning (ML) algorithms https://secml.gitlab.io/.
Demontis et al., “Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks,” presented at the 28th USENIX Security Symposium (USENIX Security 19), 2019, pp. 321–338. https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
W. Koh and P. Liang, “Understanding Black-box Predictions via Influence Functions,” in International Conference on Machine Learning (ICML), 2017. https://arxiv.org/abs/1703.04730
Melis, A. Demontis, B. Biggio, G. Brown, G. Fumera, and F. Roli, “Is Deep Learning Safe for Robot Vision? Adversarial Examples Against the iCub Humanoid,” in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), 2017, pp. 751–759. https://arxiv.org/abs/1708.06939
Biggio and F. Roli, “Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning,” Pattern Recognition, vol. 84, pp. 317–331, 2018. https://arxiv.org/abs/1712.03141
Biggio et al., “Evasion attacks against machine learning at test time,” in Machine Learning and Knowledge Discovery in Databases (ECML PKDD), Part III, 2013, vol. 8190, pp. 387–402. https://arxiv.org/abs/1708.06131
Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector machines,” in 29th Int’l Conf. on Machine Learning, 2012, pp. 1807–1814. https://arxiv.org/abs/1206.6389
Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, “Adversarial classification,” in Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Seattle, 2004, pp. 99–108. https://dl.acm.org/citation.cfm?id=1014066
Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. "Axiomatic attribution for deep networks." Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017. https://arxiv.org/abs/1703.01365
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Model-agnostic interpretability of machine learning." arXiv preprint arXiv:1606.05386 (2016). https://arxiv.org/abs/1606.05386
Guo, Wenbo, et al. "Lemna: Explaining deep learning based security applications." Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2018. https://dl.acm.org/citation.cfm?id=3243792
Bach, Sebastian, et al. "On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation." PloS one 10.7 (2015): E0130140. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140