DEV Community

Cover image for Databricks - Variant Type Analysis
Debashis Adak
Debashis Adak

Posted on

Databricks - Variant Type Analysis

The VARIANT data type is a recent introduction in Databricks (available in Databricks Runtime 15.3 and above) designed specifically for handling semi-structured data. It offers an efficient and flexible way to store and process this kind of data, which often has a dynamic or evolving schema.

Here's a quick rundown of its key features (As per the documentation of Databricks):

  • Flexibility: VARIANT can store various data structures within a single column, including structs, arrays, maps, and scalars. This eliminates the need for pre-defined schemas, making it adaptable to changing data formats.

  • Performance: Compared to storing semi-structured data as JSON strings, VARIANT offers significant performance improvements. This is because VARIANT uses a binary encoding scheme for data representation, allowing for faster processing.

  • Ease of Use: Databricks recommends VARIANT as the preferred choice over JSON strings for working with semi-structured data. It provides familiar syntax for querying fields and elements within the VARIANT column using dot notation and array indexing.

Overall, the VARIANT data type streamlines working with semi-structured data in Databricks, enhancing flexibility, performance, and ease of use.

Snowflake has long offered the VARIANT data type, allowing you to store semi-structured data without pre-defining a schema. This eliminates the burden of schema design upfront.

In contrast, for Delta Lake previously we relied on the MAP data type, which requires a defined schema. However, semi-structured data often exhibits schema variations across rows, creating challenges for data engineers. Parsing the data correctly before storage was a necessary but tedious step.

In this exploration, I'll try to uncover the VARIANT data type in Databricks and its underlying mechanisms.

Some important databricks documentation links

Code Reference

https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2440252792644019/398134129842206/8684924100662862/latest.html

Steps To Setup

Step 1: Provision a databricks cluster with a runtime environment 15.3

I created a Test Cluster with runtime 15.3 Beta version (Apache Spark 3.5.0, Scala: 2.12)

Image description

Step 2: Verify your workbook if it is running with 15.3

Image description

Step 3: Create a schema

For the first time, we are going to create the schema. You can use your own schema. Post creation, it should start reflecting in the catalog.

Image description

Step 4: Verify if parse_json function is present (from 15.3 version, this function should be present)

As per the documentation: https://docs.databricks.com/en/semi-structured/variant.html to parse json data of a column, you can use parse_json function. It will validate incoming data if it is in JSON format or not. Also, it will create VARIANT data type of the column if you are creating the table using select.

Image description

Step 5: Create a table

On this step, we are creating a table variant_data_exploration in the schema myschema parsing a json object As per the query, it will create 3 columns

  1. id: int
  2. name: string
  3. raw: variant

Image description

Step 6: Table Schema Verification

As you can see below, under the section, # Delta Statistics Columns,

Column Names: id, name, raw

Column Selection Method: first-32 (default behavior of a deltalake table. It gathers statistics for the first 32 columns)

Location: dbfs:/user/hive/warehouse/myschema.db/variant_data_exploration

Image description

Step 7: Verify Files in Table Location

[
FileInfo(path='dbfs:/user/hive/warehouse/myschema.db/variant_data_exploration/_delta_log/', name='_delta_log/', size=0, modificationTime=0),
 FileInfo(path='dbfs:/user/hive/warehouse/myschema.db/variant_data_exploration/part-00000-603c8a87-dfdd-41a0-817d-9226cef0ab8a-c000.snappy.parquet', name='part-00000-603c8a87-dfdd-41a0-817d-9226cef0ab8a-c000.snappy.parquet', size=3943, modificationTime=1719567376000)
]
Enter fullscreen mode Exit fullscreen mode

Image description

As we can see, there are _delta_log directory (having deltatable metadata/stats related files) and one parquet file (part-00000-603c8a87-dfdd-41a0-817d-9226cef0ab8a-c000.snappy.parquet) holding a single row.

Step 8: Verify Files in __delta_log location

[FileInfo(path='dbfs:/user/hive/warehouse/myschema.db/variant_data_exploration/_delta_log/00000000000000000000.crc', name='00000000000000000000.crc', size=2616, modificationTime=1719567381000),
 FileInfo(path='dbfs:/user/hive/warehouse/myschema.db/variant_data_exploration/_delta_log/00000000000000000000.json', name='00000000000000000000.json', size=1741, modificationTime=1719567377000),
 FileInfo(path='dbfs:/user/hive/warehouse/myschema.db/variant_data_exploration/_delta_log/_commits/', name='_commits/', size=0, modificationTime=0)]
Enter fullscreen mode Exit fullscreen mode

Image description

Mainly it has 2 file types

  1. 00000000000000000000.json (Holds column statistics & responsible for data pruning/ file skipping. For each commit, a new json file with incremented value gets created)
  2. 00000000000000000000.crc (Every 10 transactions json files in the deltalog are converted to parquet files. The .crc file is a checksum added to prevent corruption if a parquet file is corrupted in flight)

Explore

Lets see the content inside 00000000000000000000.json as this is the main driving factor of data skipping & query performance.

Image description

---------------+----------------------------------------------------+
|add                                                                                                                                                                                                                                                                                            |commitInfo                                                                                                                                                                                                                                                                                            |metaData                                                                                                                                                                                                                                                                                   |protocol                                            |
+---------------------------------------------------------------------------------------------
|NULL                                                                                                                                                                                                                                                                                           |{0628-070916-m4o60ack, Databricks-Runtime/15.3.x-scala2.12, false, WriteSerializable, {398134129842206}, CREATE OR REPLACE TABLE AS SELECT, {1, 3943, 1}, {[], NULL, true, [], {}, false}, {true, false}, 1719567376334, 472f6c8b-cd1d-4347-acd4-c49c2ebd8072, 8684924100662862, abc@gmail.com}|NULL                                                                                                                                                                                                                                                                                       |NULL                                                |
|NULL                                                                                                                                                                                                                                                                                           |NULL                                                                                                                                                                                                                                                                                                  |{1719567374807, {parquet}, c22760ef-1595-4a59-974a-2a4dbb3a1386, [], {"type":"struct","fields":[{"name":"id","type":"integer","nullable":true,"metadata":{}},{"name":"name","type":"string","nullable":true,"metadata":{}},{"name":"raw","type":"variant","nullable":true,"metadata":{}}]}}|NULL                                                |
|NULL                                                                                                                                                                                                                                                                                           |NULL                                                                                                                                                                                                                                                                                                  |NULL                                                                                                                                                                                                                                                                                       |{3, 7, [variantType-preview], [variantType-preview]}|
|{true, 1719567376000, part-00000-603c8a87-dfdd-41a0-817d-9226cef0ab8a-c000.snappy.parquet, 3943, {"numRecords":1,"minValues":{"id":1,"name":"abc"},"maxValues":{"id":1,"name":"abc"},"nullCount":{"id":0,"name":0,"raw":0}}, {1719567376000000, 1719567376000000, 1719567376000000, 268435456}}|NULL                                                                                                                                                                                                                                                                                                  |NULL                                                                                                                                                                                                                                                                                       |NULL                                                |
+---------------------------------------------------------------------------------------------

Enter fullscreen mode Exit fullscreen mode

Observations

Check this stats section in delta log

{"numRecords":1,"minValues":{"id":1,"name":"abc"},"maxValues":{"id":1,"name":"abc"},"nullCount":{"id":0,"name":0,"raw":0}}
Enter fullscreen mode Exit fullscreen mode

deltatable gathered min value & max value statistics for only id & name column not for raw. It means FILTER condition in a SELECT query on a VARIANT datatype shouldn't contribute to file skipping. You would still be dependent on other non-complex columns to have a file level data skipping.

What if we insert a NULL value then? Will it contribute in data skipping?

Image description

Now deltalog has version 00000000000000000001 available

Image description

Content of 00000000000000000001.json file

+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|add                                                                                                                                                                                                                                                                                            |commitInfo                                                                                                                                                                                                                                                      |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|NULL                                                                                                                                                                                                                                                                                           |{0628-070916-m4o60ack, Databricks-Runtime/15.3.x-scala2.12, true, WriteSerializable, {398134129842206}, WRITE, {1, 1036, 1}, {Append, [], false}, 0, {true, false}, 1719572454185, 1b7a5e88-9f4b-4c9e-8af3-39a1b808b5cc, 8684924100662862, abc@gmail.com}|
|{true, 1719572454000, part-00000-477f86d9-19d7-462d-ab1d-e7891348b2a3-c000.snappy.parquet, 1036, {"numRecords":1,"minValues":{"id":2,"name":"def"},"maxValues":{"id":2,"name":"def"},"nullCount":{"id":0,"name":0,"raw":1}}, {1719572454000000, 1719572454000000, 1719572454000000, 268435456}}|NULL                                                                                                                                                                                                                                                            |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Enter fullscreen mode Exit fullscreen mode

See the plan of the query

select * from myschema.variant_data_exploration where raw is not null
Enter fullscreen mode Exit fullscreen mode

Image description

Here no. of files read = 1 & no. of file pruned = 1. It means it skipped the file of the first commit. It means it contributed to file skipping. Why?

See the section 00000000000000000001.json file

"nullCount":{"id":0,"name":0,"raw":1}}
Enter fullscreen mode Exit fullscreen mode

It means during the second commit, we have inserted the row with raw field is NULL & deltalake captured that stats. So, it is able to skip the file scan.

What if we insert a {} value then? Will it contribute in data skipping?

We all know, in many systems, while persisting a NULL semi-structured data, we persist the record as {}. It is kind of NULL representation of a JSON. Lets see how VARIANT responds to it.

Image description

Content of 00000000000000000002.json file

+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|add                                                                                                                                                                                                                                                                                            |commitInfo                                                                                                                                                                                                                                                      |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|NULL                                                                                                                                                                                                                                                                                           |{0628-070916-m4o60ack, Databricks-Runtime/15.3.x-scala2.12, true, WriteSerializable, {398134129842206}, WRITE, {1, 1102, 1}, {Append, [], false}, 1, {true, false}, 1719573911083, 6a04ec9a-9a61-4875-a47d-7d26d14877cf, 8684924100662862, abc@gmail.com}|
|{true, 1719573911000, part-00000-4d9aa00d-2c82-4e96-b15c-16cba8b374a4-c000.snappy.parquet, 1102, {"numRecords":1,"minValues":{"id":3,"name":"ghi"},"maxValues":{"id":3,"name":"ghi"},"nullCount":{"id":0,"name":0,"raw":0}}, {1719573911000000, 1719573911000000, 1719573911000000, 268435456}}|NULL                                                                                                                                                                                                                                                            |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

Enter fullscreen mode Exit fullscreen mode

Now if you see this below section, deltalake didn't consider {} as NULL value

"nullCount":{"id":0,"name":0,"raw":0}}
Enter fullscreen mode Exit fullscreen mode

So, if we run a query like below, it will scan two files (1st transaction & 3rd transaction). See the below explain plan.

select * from myschema.variant_data_exploration where raw:fb::string ='abc';
Enter fullscreen mode Exit fullscreen mode

Image description

Conclusion

  1. Variant provides huge flexibility in terms of storing semi-structured data
  2. For Variant data type, File pruning is possible if you are storing data as NULL not {} or any other
  3. As deltalake doesn't capture stats of internal fields of a variant column, if we query them it will result in loading all the parquet files (in a partition if a partitioned table) with NOT NULL variant data.
  4. If we are modelling the deltatable & our ETL is pushing NOT NULL values in variant, you can keep those columns outside of first 32 columns. Performance is expected to be the same.

Things to Follow-up

As far as I can remember, few years back, I was debugging a Variant column performance issue in Snowflake. At that time, either snowflake team or in some snowflake forum (Can't remember exactly) claimed, snowflake persists Variant data in a very flattened format in their storage. Also, it gathers stats of all the internal fields of a variant. That makes snowflake very unique as it doesn't have any performance impact between querying a normal column & an attribute within a Variant column. Not sure if it is true on today's date or not. Need to follow-up :)

Top comments (0)