I had trouble understanding the `AdaptiveAvgPool2d`

function in PyTorch. The following examples helped me to teach myself better. Hopefully, somebody may benefit from this.

# Example 1

```
import torch
import torch.nn as nn
import numpy as np
m = nn.AdaptiveAvgPool2d((1))
x = np.array(
[
[ 2. , 3.],
[ 4. , 1.],
])
input = torch.tensor(x)
print(input)
output = m(input)
print(output)
print(torch.mean(input))
```

The output will be equal to torch.mean(input)

# Example 2 with a 3 x 3 x 3 tensor

```
x = np.array(
[
[
[ 2. , 3. , 2.],
[ 2. , 3. , 2.],
[ 2. , 3. , 2.],
],
[
[ 1. , 4. , 5.],
[ 1. , 4. , 5.],
[ 1. , 4. , 5. ],
],
[
[ 7. , 3. , 2.],
[ 7. , 3. , 2.],
[ 7. , 3. , 2.],
]
])
```

This is a 3 x 3 x 3 array

```
input = torch.tensor(x)
m = nn.AdaptiveAvgPool2d((2))
output = m(input)
print(output)
```

Let's investigate why the 1st element is 2.5

We take a 2 x 2 tensor out of the 3 x 3 x 3 tensor and take the mean and see that it is 2.5

```
x2 = torch.tensor(np.array([2. , 3. , 2. , 3.]))
torch.mean(x2)
```

## Example 3

We see that the 6th element is 4.5. How is this calculated?

We take the mean of the following section

```
x3 = torch.tensor(np.array([ 4.0 , 5. , 4. , 5.]))
torch.mean(x3)
```

# Example 4 with a 4 x 3 x 3 tensor

```
x = np.array(
[
[
[ 2. , 3. , 2.],
[ 2. , 3. , 2.],
[ 2. , 3. , 2.],
],
[
[ 1. , 4. , 5.],
[ 1. , 4. , 5.],
[ 1. , 4. , 5. ],
],
[
[ 7. , 3. , 2.],
[ 7. , 3. , 2.],
[ 7. , 3. , 2.],
],
[
[ 8. , 3. , 2.],
[ 8. , 3. , 2.],
[ 8. , 3. , 2.],
]
])
input = torch.tensor(x)
print(input)
print(input.shape)
```

This is a 4 x 3 x 3 tensor

```
m = nn.AdaptiveAvgPool2d([1,1])
output= m(input)
print(output)
```

Let us explore why the first element is **2.3333**

```
x4 = torch.tensor(
np.array( [ 2. , 3. , 2., 2. , 3. , 2., 2. , 3. , 2.])
)
print(torch.mean(x4))
```

## Top comments (0)