I tried to compute the Kaprekar numbers up to 10^{8.} A simple improvement in taking the interesting part and dropping the rest: If quotient or remainder are > n the sum of both must be > n. This reduced execution time by 50 %.

Could I trouble someone to comment this code? Oops, I guess that's in the parent comment, thanks! I don't know Haskell but I'm interested in it. Does this solution work for the 'strange' ones like 4789, 5292?

Trying to wrap my head around how to interpret the definition of a Kaprekar number, in a way that includes these oddball numbers.

I'm currently studying Ruby -- I'll necro-post my Ruby solution if I manage to get it working with the oddballs.

## re: Challenge: find 'Kaprekar numbers' VIEW POST

TOP OF THREAD FULL DISCUSSIONI tried to compute the Kaprekar numbers up to 10

^{8.}A simple improvement in taking the interesting part and dropping the rest: If quotient or remainder are > n the sum of both must be > n. This reduced execution time by 50 %.~~Could I trouble someone to comment this code? Oops, I guess that's in the parent comment, thanks!~~I don't know Haskell but I'm interested in it. Does this solution work for the 'strange' ones like 4789, 5292?Trying to wrap my head around how to interpret the definition of a Kaprekar number, in a way that includes these oddball numbers.

I'm currently studying Ruby -- I'll necro-post my Ruby solution if I manage to get it working with the oddballs.