

 Skip to content

 Log in

 Create account

 DEV Community

 Add reaction

 Like

 Unicorn

 Exploding Head

 Raised Hands

 Fire

 Jump to Comments

 Save

 Copy link

Copied to Clipboard

 Share to Twitter

 Share to LinkedIn

 Share to Reddit

 Share to Hacker News

 Share to Facebook

 Share to Mastodon

 Share Post via...

 Report Abuse

 Jeffrey Ip
 for Confident AI

 Posted on Sep 26, 2023

 • Updated on Nov 11, 2023

 • Originally published at confident-ai.com

 How to build a PDF QA chatbot using OpenAI and ChromaDB 🤗

 #tutorial
 #programming
 #chatgpt
 #python

 TL;DR

In this article, you'll learn how to build a RAG based chatbot to chat with any PDF of your choice so you can achieve your lifelong dream of talking to PDFs 😏 In the end, I'll also show how you can test what you've built ✅

I know, I wrote something similar in my last article on building a customer support chatbot 😅 but this week we're going to dive deep into how to use the raw OpenAI API to chat with PDF data (including text trapped in visuals like tables) stored in ChromaDB, as well as how to use Streamlit to build the chatbot UI.

 A small request 🙏🏻

I'm trying to get DeepEval to 5k stars by the end of 2023, can you please help me out by starring my repo? It helps me create more weekly high quality content ❤️ thank you very very much!

https://github.com/confident-ai/deepeval

 Introducing RAG, Vector Databases, and OCR

Before we dive into the code, let's debunk what we're going to implement 🕵️ To begin, OCR (Optical Character Recognition) is a technology within the field of computer vision that recognizes the characters present in the document and converts them into text - this is particularly helpful in the case of tables and charts in documents 😬 We'll be using OCR provided by Azure Cognitive Services in this tutorial.

Once text chunks are extracted using OCR, they are converted into a high-dimensional vector (aka. vectorized) using embedding models like Word2Vec, FastText, or BERT. These vectors, which encapsulate the semantic meaning of the text, are then indexed in a vector database. We'll be using ChromaDB as our in-memory vector database 🥳

Now, let's see what happens when a user asks their PDF something. First, the user query is first vectorized using the same embedding model used to vectorize the extracted PDF text chunks. Then, the top K most semantically similar text chunk is fetched by searching through the vector database, which remember, contains the text chunks from our PDF. The retrieved text chunks are then provided as context for ChatGPT to generate an answer based on information in their PDF. This is the process of retrieval, augmented, generation (RAG).

Feeling educated? 😊 Let's begin.

 Project Setup

First, I'm going to guide you through how to set up your project folders and any dependencies you need to install.

Create a project folder and a python virtual environment by running the following command:

mkdir chat-with-pdf
cd chat-with-pdf
python3 -m venv venv
source venv/bin/activate

Your terminal should now start something like this:

(venv)

 Installing dependencies

Run the following command to install OpenAI API, ChromaDB, and Azure:

pip install openai chromadb azure-ai-formrecognizer streamlit tabulate

Let's briefly go over what each of those package does:

	
streamlit - sets up the chat UI, which includes a PDF uploader (thank god 😌)
	
azure-ai-formrecognizer - extracts textual content from PDFs using OCR
	
chromadb - is an in-memory vector database that stores the extracted PDF content
	
openai - we all know what this does (receives relevant data from chromadb and returns a response based on your chatbot input)

Next, create a new main.py file - the entry point to your application

touch main.py

 Getting your API keys

Lastly, get your OpenAI and Azure API key ready (click the hyperlink to get them if you don't already have one)

Note: It's pretty troublesome to sign up for an account on Azure Cognitive Services. You'll need a card (although they won't charge you automatically), and phone number 😔 but do give it a try if you're trying to build something serious!

 Building the Chatbot UI with Streamlit

Streamlit is an easy way to build frontend applications using python.

Lets import streamlit along with setting up everything else we'll need:

import streamlit as st
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential
from tabulate import tabulate
from chromadb.utils import embedding_functions
import chromadb
import openai

You'll need this client later to store PDF data
client = chromadb.Client()
client.heartbeat()

Give our chat UI a title and create a file uploader:

...
st.write("#Chat with PDF")

uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
...

Listen for a change event in uploaded_file. This will be triggered when you upload a file:

...
if uploaded_file is not None:
 # Create a temporary file to write the bytes to
 with open("temp_pdf_file.pdf", "wb") as temp_file:
 temp_file.write(uploaded_file.read())
...

View your streamlit app by running main.py (we'll implement the chat input UI later):

streamlit run main.py

That's the easy part done 🥳! Next comes the not so easy part...

 Extracting text from PDFs

Carrying on from the previous code snippet, we're going to send temp_file to Azure Cognitive Services for OCR:

 ...
 # you can set this up in the azure cognitive services portal
 AZURE_COGNITIVE_ENDPOINT = "your-custom-azure-api-endpoint"
 AZURE_API_KEY = "your-azure-api-key"
 credential = AzureKeyCredential(AZURE_API_KEY)
 AZURE_DOCUMENT_ANALYSIS_CLIENT = DocumentAnalysisClient(AZURE_COGNITIVE_ENDPOINT, credential)

 # Open the temporary file in binary read mode and pass it to Azure
 with open("temp_pdf_file.pdf", "rb") as f:
 poller = AZURE_DOCUMENT_ANALYSIS_CLIENT.begin_analyze_document("prebuilt-document", document=f)
 doc_info = poller.result().to_dict()
 ...

Here, dict_info is a dictionary containing information on the extracted text chunks. It's a pretty complicated dictionary, so I would recommend printing it out and seeing for yourself what it looks like.

Paste in the following to finish processing the data received from Azure:

 ...
 res = []
 CONTENT = "content"
 PAGE_NUMBER = "page_number"
 TYPE = "type"
 RAW_CONTENT = "raw_content"
 TABLE_CONTENT = "table_content"

 for p in doc_info['pages']:
 dict = {}
 page_content = " ".join([line["content"] for line in p["lines"]])
 dict[CONTENT] = str(page_content)
 dict[PAGE_NUMBER] = str(p["page_number"])
 dict[TYPE] = RAW_CONTENT
 res.append(dict)

 for table in doc_info["tables"]:
 dict = {}
 dict[PAGE_NUMBER] = str(table["bounding_regions"][0]["page_number"])
 col_headers = []
 cells = table["cells"]
 for cell in cells:
 if cell["kind"] == "columnHeader" and cell["column_span"] == 1:
 for _ in range(cell["column_span"]):
 col_headers.append(cell["content"])

 data_rows = [[] for _ in range(table["row_count"])]
 for cell in cells:
 if cell["kind"] == "content":
 for _ in range(cell["column_span"]):
 data_rows[cell["row_index"]].append(cell["content"])
 data_rows = [row for row in data_rows if len(row) > 0]

 markdown_table = tabulate(data_rows, headers=col_headers, tablefmt="pipe")
 dict[CONTENT] = markdown_table
 dict[TYPE] = TABLE_CONTENT
 res.append(dict)
 ...

Here, we accessed various properties of the dictionary returned by Azure to get texts on the page, and data stored in tables. The logic is pretty complex because of all the nested structures 😨 but from personal experience, Azure OCR works well even for complex PDF structures, so I highly recommend giving it a try :)

 Storing PDF content in ChromaDB

Still with me? 😅 Great, we're almost there so hang in there!

Paste in the code below to store extracted text chunks from res in ChromaDB.

 ...
 try:
 client.delete_collection(name="my_collection")
 st.session_state.messages = []
 except:
 print("Hopefully you'll never see this error.")

 openai_ef = embedding_functions.OpenAIEmbeddingFunction(api_key="your-openai-api-key", model_name="text-embedding-ada-002")
 collection = client.create_collection(name="my_collection", embedding_function=openai_ef)
 data = []
 id = 1
 for dict in res:
 content = dict.get(CONTENT, '')
 page_number = dict.get(PAGE_NUMBER, '')
 type_of_content = dict.get(TYPE, '')

 content_metadata = {
 PAGE_NUMBER: page_number,
 TYPE: type_of_content
 }

 collection.add(
 documents=[content],
 metadatas=[content_metadata],
 ids=[str(id)]
)
 id += 1
 ...

The first try block ensures that we can continue uploading PDFs without having to refresh the page.

You might have noticed that we add data into a collection and not to the database directly. A collection in ChromaDB is a vector space. When a user enters a query, it performs a search inside this collection, instead of the entire database. In Chroma, this collection is identified by a unique name, and with a simple line of code, you can add all extracted text chunks via to this collection via collection.add(...).

 Generating a response using OpenAI

I get asked a lot about how to build a RAG chatbot without relying on frameworks like langchain and lLamaIndex. Well here's how you do it - you construct a list of prompts dynamically based on the retrieved results from your vector database.

Paste in the following code to wrap things up:

...
if "messages" not in st.session_state:
 st.session_state.messages = []

Display chat messages from history on app rerun
for message in st.session_state.messages:
 with st.chat_message(message["role"]):
 st.markdown(message["content"])

if prompt := st.chat_input("What do you want to say to your PDF?"):
 # Display your message
 with st.chat_message("user"):
 st.markdown(prompt)
 # Add your message to chat history
 st.session_state.messages.append({"role": "user", "content": prompt})

 # query ChromaDB based on your prompt, taking the top 5 most relevant result. These results are ordered by similarity.
 q = collection.query(
 query_texts=[prompt],
 n_results=5,
)
 results = q["documents"][0]

 prompts = []
 for r in results:
 # construct prompts based on the retrieved text chunks in results
 prompt = "Please extract the following: " + prompt + " solely based on the text below. Use an unbiased and journalistic tone. If you're unsure of the answer, say you cannot find the answer. \n\n" + r

 prompts.append(prompt)
 prompts.reverse()

 openai_res = openai.ChatCompletion.create(
 model="gpt-4",
 messages=[{"role": "assistant", "content": prompt} for prompt in prompts],
 temperature=0,
)

 response = openai_res["choices"][0]["message"]["content"]
 with st.chat_message("assistant"):
 st.markdown(response)

 # append the response to chat history
 st.session_state.messages.append({"role": "assistant", "content": response})

Notice how we reversed prompts after constructing a list of prompts according to the list of retrieved text chunks from ChromaDB. This is because the results returned from ChromaDB is ordered in descending order, meaning the most relevant text chunk will always be the first in the results list. However, the way ChatGPT works is it considers the last prompt in a list of prompts more, hence why we have to reverse it.

Run the streamlit app and try things out for yourself 😙:

streamlit run main.py

🎉 Congratulations, you made it to the end!

 Taking it a step further

As you know, LLM applications are a black box and so for production use cases, you'll want to safeguard the performance of your PDF chatbot to keep your users happy. To learn how to build a simple evaluation framework that could get you setup in less than 30 minutes, click here.

 Conclusion

In this article, you've learnt:

	what a vector database is a how to use ChromaDB
	how to use the raw OpenAI API to build a RAG based chatbot without relying on 3rd party frameworks
	what OCR is and how to use Azure's OCR services
	how to quickly set up a beautiful chatbot UI using streamlit, which includes a file uploader.

This tutorial walked you through an example of how you can build a "chat with PDF" application using just Azure OCR, OpenAI, and ChromaDB. With what you've learnt, you can build powerful applications that help increase the productivity of workforces (at least that's the most prominent use case I've came across).

The source code for this tutorial is available here:

https://github.com/confident-ai/blog-examples/tree/main/chat-with-pdf

Thank you for reading!

 Top comments (0)

 Subscribe

 Personal
 Trusted User

 Create template

 Templates let you quickly answer FAQs or store snippets for re-use.

 Submit
 Preview
 Dismiss

 Code of Conduct
 •
 Report abuse

 Are you sure you want to hide this comment? It will become hidden in your post, but will still be visible via the comment's permalink.

 Hide child comments as well

 Confirm

 For further actions, you may consider blocking this person and/or reporting abuse

 Read next

 Data Structures and Null Safety in Dart - Part 4

 Sadanand gadwal - Mar 4

 The Subtleties of Vector Similarity Scales (part 4)

 Stefano Lottini - Mar 4

 Memory Handling in Java

 Atul Kushwaha - Mar 4

 Elevate Your Coding Experience: Introducing My Monthly Updated VSCode Profile

 Devashish Tiwari - Feb 23

 Confident AI

 Follow

 Evaluation Infrastructure for AI

 Support us on Github ❤️

We'd appreciate a star on GitHub. As an open-source project, each star and contribution helps other users discover us.

 Give us a⭐on Github

 More from Confident AI

 🔪 6 Killer Open-Source Libraries to Achieve AI Mastery in 2024 🔥🪄

 #webdev
 #programming
 #opensource
 #ai

 What is Retrieval Augmented Generation (RAG)? 🚀

 #ai
 #tutorial
 #programming
 #opensource

 The one thing everyone's doing wrong with ChatGPT... 🤫🤔

 #beginners
 #programming
 #opensource
 #tutorial

 DEV Community — A constructive and inclusive social network for software developers. With you every step of your journey.

 	

 Home

	

 Podcasts

	

 Videos

	

 Tags

	

 DEV Help

	

 Forem Shop

	

 Advertise on DEV

	

 DEV Showcase

	

 About

	

 Contact

	

 Guides

	

 Software comparisons

 	

 Code of Conduct

	

 Privacy Policy

	

 Terms of use

 Built on Forem — the open source software that powers DEV and other inclusive communities.

 Made with love and Ruby on Rails. DEV Community © 2016 - 2024.

 We're a place where coders share, stay up-to-date and grow their careers.

 Log in

 Create account

