{"title":"Nonlinear Evolution of Electron Density Under High-Energy-Density Conditions","authors":"Shi Chen, Zi Y. Chen, Jian K. Dan, Jian F. Li","volume":52,"journal":"International Journal of Physical and Mathematical Sciences","pagesStart":557,"pagesEnd":561,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/12924","abstract":"Evolution of one-dimensional electron system under\r\nhigh-energy-density (HED) conditions is investigated, using the\r\nprinciple of least-action and variational method. In a single-mode\r\nmodulation model, the amplitude and spatial wavelength of the\r\nmodulation are chosen to be general coordinates. Equations of motion\r\nare derived by considering energy conservation and force balance.\r\nNumerical results show that under HED conditions, electron density\r\nmodulation could exist. Time dependences of amplitude and\r\nwavelength are both positively related to the rate of energy input.\r\nBesides, initial loading speed has a significant effect on modulation\r\namplitude, while wavelength relies more on loading duration.","references":"[1] E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat,\r\n\"The National Ignition Facility: Ushering in a new age for high energy\r\ndensity science,\" Phys. Plasmas, vol. 16, pp. 041006, Apr. 2009.\r\n[2] B. A. Remington, \"Preface to Special Topic: High Energy Density\r\nLaboratory Astrophysics: Summaries of Papers Given During a Special\r\nSession at the American Physical Society 2008 April Meeting, St. Louis,\r\nMissouri,\" Phys. Plasmas, vol. 16, pp. 040901, Apr. 2009.\r\n[3] P. A. Norreys, F. N. Beg, Y. Sentoku, L. O. Silva, R. A. Smith, and R. M.\r\nG. M. Trines, \"Intense laser-plasma interactions: New frontiers in high\r\nenergy density physics,\" Phys. Plasmas, vol. 16, pp. 041002, Apr. 2009.\r\n[4] R. P. Drake, High-Energy-Density Physics: Fundamentals, Inertial\r\nFusion, and Experimental Astrophysics. Springer, 2007, pp. 2-3.\r\n[5] E. Esarey, C. B. Schroeder, and W. P. Leemans, \"Physics of laser-driven\r\nplasma-based electron accelerators,\" Rev. Mod. Phys., vol. 81, pp.\r\n1229-1285, Aug. 2009.\r\n[6] F. C. Michel, \"Theory of pulsar magnetospheres,\" Rev. Mod. Phys., vol.\r\n54, pp. 1-66, Jan. 1982.\r\n[7] C. B. Schroeder, and E. Esarey, \"Relativistic warm plasma theory of\r\nnonlinear laser-driven electron plasma waves,\" Phys. Rev. E, vol. 81, pp.\r\n056403, May 2010.\r\n[8] Md. Kamal-Hassan, M. Starodubtsev, H. Ito, N. Yugami, and Y. Nishida,\r\n\"Excitation of ion-wave wakefield by the resonant absorption of a short\r\npulsed microwave with plasma,\" Phys. Rev. E, vol. 68, pp. 036404, Sep.\r\n2003.\r\n[9] W. L. Kruer, Physics of Laser Plasma Interactions. Addison-Wesley,\r\n1988.\r\n[10] J. D. Jackson, Classical Electrodynamics. Wiley, 2005.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 52, 2011"}